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Chapter 1

Mathematical Modelling and
Perturbation Methods

Mathematical modelling is an art. It is the art of portrayinga real, often physical, problem mathemat-
ically, by sorting out the whole spectrum of effects that play or may play a role, and then making a
judicious selection by including what is relevant and excluding what is too small. This selection is
what we call amodelor theory. Models and theories, applicable in a certain situation, are not iso-
lated islands of knowledgeprovided with a logical flag, labelling itvalid or invalid. A model is never
unique, because it depends on the type, quality and accuracyof answers we are aiming for, and of
course the means (time, money, numerical power, mathematical skills) that we have available.

Normally, when the problem is rich enough, this spectrum of effects does not simply consist of two
classesimportant and unimportant, but is a smoothly distributed hierarchy varying fromessential
effects viarelevantandrather relevantto unimportantandabsolutely irrelevanteffects. As a result, in
practically any model there will be effects that are small but not small enough to be excluded. We can
ignore their smallness, and just assume that all effects that constitute our model are equally important.
This is the usual approach when the problem is simple enough for analysis or a brute force numerical
simulation.

Figure 1.1: Concept of hierarchy (turbofan engine)

There are situations, however, where it could be wise to utilise the smallness of these small but im-
portant effects, but in such a way, that we simplify the problem without reducing the quality of the
model. Usually, an otherwise intractable problem becomes solvable and (most importantly) we gain
great insight in the problem.

9
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Perturbation methods do this in a systematic manner by usingthe sharp fil-
let knife of mathematics in general, and asymptotic analysis in particular.
From this perspective, perturbation methods are ways of modelling with
other means and are therefore much more important for the understand-
ing and analysis of practical problems than they’re usuallycredited with.
David Crighton [14] called “Asymptotics - an indispensable complement to
thought, computation and experiment in applied mathematical modelling”.

Examples are numerous: simplified geometries reducing the spatial dimen-
sion, small amplitudes allowing linearization, low velocities and long time
scales allowing incompressible description, small relative viscosity allow-
ing inviscid models, zero or infinite lengths rather than finite lengths, etc.

The question is: how can we use this gradual transition between models of different level. Of course,
when a certain aspect or effect, previously absent from our model, is included in our model, the change
is abrupt and big: usually the corresponding equations are more complex and more difficult to solve.
This is, however, only true if we are merely interested in exact or numericallyexactsolutions. But an
exact solution of an approximate model is not better than an approximate solution of an exact model.

x2 = 4+ 10−6x5

x2 = 4

Figure 1.2: Compare “exact” and approximate models.

So there is absolutely no reason to demand the solution to be more exact than the corresponding model.
If we accept approximate solutions, based on the inherent small or large modelling parameters, we do
have the possibilities to gradually increase the complexity of a model, and study small but significant
effects in the most efficient way.

The methods utilizing systematically this approach are called perturbations methods. Usually, a dis-
tinction is made between regular and singular perturbations. A (loose definition of a) regular perturba-
tion is one in which the solutions of perturbed and unperturbed problem are everywhere close to each
other.

We will find many applications of this philosophy in continuous mechanics (fluid mechanics, elas-
ticity), and indeed many methods arose as a natural tool to understand certain underlying physical
phenomena. We will consider here four methods relevant in continuous mechanics: (1) the method of
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slow variation and (2) the method of Lindstedt-Poincaré as examples of regular perturbation methods;
then (3) the method of matched asymptotic expansions and (4)the method of multiple scales (with
as a special case the WKB method) as examples of singular perturbation methods. In (1) the typical
length scale in one direction is much greater than in the others, while in (2) the relevant time scale is
unknown and part of the problem. In (3) several approximations, coupled but valid in spatially distinct
regions, are solved in parallel. Method (4) relates to problems in which several length scales act in the
same direction, for example a wave propagating through a slowly varying environment.

In order to quantify the used small effect in the model, we will always introduce a small positive
dimensionless parameterε. Its physical meaning depends on the problem, but it is always the ratio
between two inherent length scales, time scales, or other characteristic problem quantities.

11 07-03-2018
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Chapter 2

Modelling and Scaling

2.1 Theory

2.1.1 What is a model? Some philosophical considerations.

Mathematics has, historically, its major sources of inspiration in applications. It is just the unexpected
question from practice that forces one to go off the beaten track. Also it is usually easier to portray
properties of a mathematical abstraction with a concrete example at hand. Therefore, it is safe to say
that most mathematics is applied, applicable or emerges from applications.

Before mathematics can be applied to a real problem, the problem must be described mathematically.
We need a mathematical representation of its primitive elements and their relations, and the problem
must be formulated in equations and formulas, to render it amenable to formal manipulation and to
clarify the inherent structure. This is called mathematical modelling. An informal definition could be:

Describing a real-world problem in a mathematical way by what is called amodel, such
that it becomes possible to deploy mathematical tools for its solution. The model should
be based on first principles and elementary relations and it should be accurate enough,
such that it has reasonable claims to predict both quantitative and qualitative aspects of
the original problem. The accuracy of the description should be limited, in order to make
the model not unnecessary complex.

This is evidently a very loose definition. Apart from the question what is meant with: a problem being
described in a mathematical way, there is the confusing paradox that we only know the precision
of our model, if we can compare it with a better model, but thisbetter model is exactly what we
try to avoid as it is usually unnecessarily complex! In general we do not know a problem and its
accompanying model well enough to be absolutely sure that the sought description is both consistent,
complete and sufficiently accurate for the purpose, ànd not too formidable for any treatment. A model
is, therefore, to a certain extent a vague concept. Nevertheless, modelling plays a key rôle in applied
mathematics, since mathematics cannot be applied to any real world problem without the intermediate
steps of modelling. Therefore, a more structured approach is necessary, which is the aim of the present
chapter.

13
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Some people definemodellingas the process of translating a real-world problem into mathematical
terms. We will not do so, as this definition is too wide to include the subtle aspects of “limited pre-
cision” (to be discussed below). Therefore we will introduce the wordmathematising, defined as the
process of translating a real-world problem into mathematical terms. It is a translation in the sense
that we translate from the inaccurate, verbose “everyday” language to the language of mathematics.
For example, the geometrical presence and evolution of objects in space and time may be described
parametrically in a suitable coordinate system. Any properties or fields that are expected to play a rôle
may be formulated by functions in time and space, explicitlyor implicitly, for example as a differential
equation.

Mathematising is an elementary but not trivial step. In fact, it forms probably the single most important
step in the progress of science. It requires the distinction, naming, and exact specification of the
essential relevant elementary objects and their interrelations, where mathematics acts as a language
in which the problem is described. If theory is available forthe mathematical problem obtained this
way, the problem considered may be subjected to the strict logic of mathematics, and reasoning in this
language will transcend over the limited and inaccurate ordinary language. Mathematising is therefore,
apart from providing the link between the mathematical world and the real world, also important for
science in general.

A very important point to note is the fact that such a mathematised formulation isalwaysat some
level simplified. The earth can be modelled by a point or a sphere in astronomical applications, or
by an infinite half-space or modelled not at all in problems ofhuman scale. Based on the level of
simplification, sophistication or accuracy, we can associate an inherent hierarchy to the set of possible
descriptions. A model may be too crude, but also it may be too refined. It is too crude if it just
doesn’t describe the problem considered, or if the numbers it produces are not accurate enough to be
acceptable. It is too refined if it includes irrelevant effects that make the problem untreatable, or make
the model so complicated that important relations or trendsremain hidden.

The ultimate goal for mathematising a problem is a deeper understanding and a more profound anal-
ysis and solution of the problem. Usually, a more refined problem translation is more accurate but
also more complicated and more difficult – if not impossible!– to analyse and solve than a simpler
one. Therefore, not every mathematical translation is a good one. We will call a good mathematical
translation amodelor mathematical modelif it is lean or thrifty in the sense, that it describes our
problem quantitatively or qualitatively in a suitable or required accuracy with aminimal number of
essentially different parameters and variables. (We say “essentially different”, in view of a reduction
that is always possible by writing the problem in dimensionless form. See Buckingham’s Theorem
below.) Again, this definition is rather subjective, as it greatly depends on the context of the problem
considered and our knowledge and resources. So there will rarely be one “best” model. At the same
time, it shows that modelling, even if relying significantlyon intuition, is part of the mathematical
analysis.
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2.1.2 Types of models

We will distinguish the following three classes of models.

• Systematic models.
Other possible names areasymptotic modelsor reducing models, and it is the most important
type for us here. The starting point is to use available complete models, which are adequate,
but over-complete in so far that effects are included which are irrelevant, uninteresting, or
negligibly small, making the mathematical problem unnecessarily complex. By using avail-
able additional information (order of magnitude of the parameters) assumptions can be made
which minimize in a systematic way theover-completemodel into agoodmodel by taking
a parameter that is already large or small to its asymptotic limit: small parameters are taken
zero, large parameters become infinite, an almost symmetry becomes a full symmetry.

Examples of systematic models are found in particular in thewell-established fields of con-
tinuum physics (fluid mechanics, elasticity). An ordinary flow is usually described by a model
which is reduced from the full,i.e.compressible and viscous, Navier-Stokes equations.

An example is the convection-diffusion problem described by the “complete” model

∂T

∂t
+ v·∇T = α∇2T,

which is difficult to solve, but may be reduced to the much simpler

∂T

∂t
+ v·∇T = 0

if we have reasons to believe that diffusion termα∇2T is small compared to convection.

Another example is the (again difficult) nonlinear pendulumequation

d2θ

dt2
= − g

L
sinθ,

which may be reduced to the much simpler linear equation

d2θ

dt2
= − g

L
θ,

if we know or conjecture that angleθ is small and sinθ ≃ θ .

• Constructing models
Another possible name isbuilding block models. Here we build our problem description step
by step from low to high, from simple to more complex, by adding effects and elements
lumped together in building blocks, until the required accuracy or adequacy is obtained. This
type of model is usually the first if a new scientific discipline is explored.

An example is the 1D Euler-Bernoulli model of a flexible bar with small displacements and
where the bending moment is assumed to be a linear function ofthe radius of curvature.

E I
∂4y

∂x4
− T

∂2y

∂x2
+ Q +m0

∂2y

∂t2
= 0.
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• Canonical models.
Another possible name ischaracteristic modelsor quintessential models. Here an existing
model is further reduced to describe only the essence of a certain aspect of the problem.
These models are particularly important if the mathematical analysis of a model from one of
the other categories is lacking available theory. The development of such theory is usually
hindered by too much irrelevant details. These models are useful for the understanding, but
usually far away from the original full problem setting and therefore not suitable for direct
industrial application.

An example is Burgers’ equation, originally formulated as an “unphysically” reduced version
of the Navier-Stokes equations in order to study certain fundamental effects,

∂u

∂t
+ u

∂u

∂x
= ν ∂

2u

∂x2
.

Note that an asymptotic model may start as a building-block model, which is only found at a later
stage to be too comprehensive. Similarly, a canonical modelmay reduce from an asymptotic model
if the latter appears to contain a particular, not yet understood effect, which should be investigated in
isolation before any progress with the original model can bemade.

The type of model which is most relevant in the context of asymptotic techniques, is theasymptotic
or systematicmodel. In the following we will explain this further.

2.1.3 Perturbation methods: the continuation of modellingby other means

We have seen above that a real-world problem described by asystematicmodel, is essentially de-
scribed by a hierarchy of systematic models, where a higher level model is more comprehensive and
more accurate than one from a lower level. Now suppose that wehave a fairly good model, describing
the dominating phenomena in good order of magnitude. And suppose that we are interested in im-
proving on this model by adding some previously ignored aspects or effects. In general, this implies a
very abrupt change in our model. The equations are more complex and more difficult to solve. As an
illustration, consider the simple “model”x2 = a2, and the more complete “model”x2+εx5 = a2. The
first one can be solved easily analytically, the second one with much more effort only numerically. So
it seems that the relation between solution and model is not continuous in the problem parameters.
Whatever smallε we take, from a transparent and exact solution of the simple model atε = 0, we
abruptly face a far more complicated solution of a model thatis just a little bit better. This is a pity,
because certain type of useful information (parametric dependencies, trends) become increasingly
more difficult to dig out of the more complicated solution of the complex model. This discontinuity
of models in the parameterε may therefore be an argument to retain the simpler model.

The (complexity of the) model is, however, only discontinuous if we are merely interested in exact
or numerically “exact” solutions (for example for reasons of benchmarking or validation of solution
methods). This is not always the case. As far as our modellingobjectives are concerned, we have
to keep in mind that also the improved model is only a next stepin the modelling hierarchy and
not exact in any absolute sense. So there is no reason to require the solution to be more exact than
the corresponding model, asan exact solution of an approximate model is not better than an
approximate solution of an exact model. Moreover, thetypeof information that analytical solutions
may provide (functional relationships,etc. ) is sometimes so important that numerical accuracy may
be worthwhile to sacrifice.
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Let us go back to our “fairly good”, improved model. The effects we added are relatively small.
Otherwise, the previous lower level model was not fairly good as we assumed, but just completely
wrong. Usually, this smallness is quantified by small dimensionless parameters (see below) occurring
in the equations and (or) boundary conditions. This is the generic situation. The transition from a
lower-level to a higher-level theory is characterized by the appearance of one or more modelling
parameters, which are (when made dimensionless) small or large, and yield in the limit a simpler
description. Examples are infinitely large or small geometries with circular or spherical symmetry
that reduce the number of spatial dimensions, small amplitudes allowing linearization, low velocities
and long time scales in flow problems allowing incompressible description, small relative viscosity
allowing inviscid models,etc. In fact, in any practical problem it is really the rule ratherthan the
exception that dimensionless numbers are either small or large.

If we accept approximate solutions, where the approximation is based on the inherently small or large
modelling parameters, we do have the possibility to gradually increase the complexity of a model,
and study small but significant effects in the most efficient way. The methods utilizing this approach
systematically are called “perturbation methods”. The approximation constructed is almost always an
asymptotic approximation,i.e. where the error reduces with the small or large parameter.

Usually, a distinction is made betweenregular andsingular perturbations. A (loose definition of a)
regular perturbation problem is where the approximate problem is everywhere close to the unper-
turbed problem. This, however, depends of course on the domain of interest and, as we will see, on
the choice of coordinates. If a problem is regular without any need for other than trivial reformula-
tions, the construction of an asymptotic solution is straightforward. In fact, it forms the usual strategy
in modelling when terms are linearised or effects are neglected. The more interesting perturbation
problems are those where this straightforward approach fails.

We will consider here four methods relevant in the presentedmodelling problems. The first two are
examples of regular perturbation methods, but only after a suitable coordinate transformation. The
other two methods are of singular perturbation type, because there is no coordinate transformation
possible that renders the problem into one of regular type.

The first method is called the Method of Slow Variation, wherethe typical axial length scale is much
greater than the transverse length scale. The second one is the Lindstedt-Poincaré Method or the
method of strained coordinates, for periodic processes. Here, the intrinsic time scale (∼ the period of
the solution) is unknown and has to be found. The third one is the Method of Matched Asymptotic
Expansions (MAE). To render the problem into one of regular type, different scalings are necessary
in spatially distinct regions (boundary layers). The fourth method considered here is the Method of
Multiple Scales and may be considered as a combination of themethod of slow variation and the
method of strained coordinates, as now several (long, short, shorter) length scales occur in parallel.
This cannot be repaired by a single coordinate transformation. Therefore, the problem is temporarily
reformulated into a higher dimensional problem by taking the various length scales apart. Then the
problem is regular again, and can be solved. A refinement of this method is the WKB Method, where
the coordinate transformation of the fast variable becomesitself slowly varying.
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2.1.4 Nondimensionalisation

The General Invariance Principle(whose universality extends far beyond physics) states that the
laws of equilibrium and motion can be expressed through equations valid for all observers. Hence,
the chosen units of a formulation should not be relevant. As aresult we have

2.1.4.1 Buckingham’s5-Theorem:

Theorem: If a physical problem is described byn variables and parameters inr dimen-
sions, the number of dimensionless groups is at least1 n− r .

Exactlyn − r if all r dimensions play a role. More thann − r if some dimensions are redundant, or
occur in the same combination. In that caser is effectively smaller.

Note: mol, rad or dB donot count, because they are dimensionless units.

A way to see this theorem intuitively is as follows.
From the problem variables, parameters, and their combinations we can construct time, length, etc.
scales. They follow from the problem and are therefore called inherent (length, time) scales. For
example, from a velocityV and a lengthL we have a timeL/V . These new scales can be used for
measuring, instead of meters or seconds. In this way we can replace the originalr dimensions byr
new dimensions from (combinations of)r variables. Theser variables, when measured in the new
dimensions, are by definition equal to unity, and play no visible role anymore. The remainingn − r
variables, on the other hand, may be expressed in the new dimensions to constitute the essential (and
nondimensional) problem parameters.

Example. A problem with the 4 variables forceF , lengthL, velocityV and viscosityη are expressed
in 3 dimensions kg, m and s by[F] = kg m/s2, [L] = m, [V] = m/s and[η] = kg/m s.

With the inherent unit of lengthL, inherent unit of timeL/V and inherent unit of massηL2/V , the
variablesL, V andη become simply 1 (timesL, V andη, respectively). Only forceF becomes some
(dimensionless) numberF times the new units as follows:

F = F ·
ηL2

V
· L

( L

V

)2
= F · LVη, in other words F = F

LVη
.

A more formal way to obtain this is by utilizing a bit linear algebra. We have for any dimensionless
quantityG the condition that it should satisfy for some combination ofα = (α1, α2, α3, α4)

[G] = [Fα1 Lα2Vα3ηα4] = mα1+α2+α3−α4 kgα1+α4 s−2α1−α3−α4 = m0 kg0 s0 = 1.

In other words we haver = 3 equations forn = 4 unknowns




1 1 1 −1
1 0 0 1
−2 0 −1 −1







α1

α2

α3

α4



=




0
0
0




1In [1] it is incorrectly statedat most.
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Since all equations are independent, this system has rank= 3, the number of equationsr , and so
4− 3 = 1 linearly independent solutions. Therefore, there is one dimensionless variableG. (If some
rows are dependent, the rank would have been less thanr and the number of independent solutions
more thann− r .) Solving this system yields the solutionα = (1,−1,−1,−1), or any multiple of it.
The corresponding dimensionless number is then

G = F

LVη
,

which confirms the above result withG = F . Note that other forms, likeG2,
√

G,1/G etc. are
equally possible dimensionless numbers, equivalent toG.

2.1.4.2 Weber’s Law.

Normally, we have in the problems studied several variablesand parameters of the same unit (dimen-
sion), which act as each other’s reference to compare with. The opposite situation, when there isno
reference available, is also meaningful.

When a variable is perceived for which there is no reference quantity available to compare with, c.q. to
scale on, the actual value of the variable itself will be the reference. The resulting logarithmic relation
(see below) is known asWeber’s Law2.

Take for example the perceived loudness of sound. Since the range of our human audible sensitivity
is incredibly large (1014 in energy), the loudest and quietest levels are practicallyinfinitely far away.
Therefore, we have no reference or scaling level to compare with, other than the actually perceived
sound itself.

As a result, variations in sound loudness dL are perceived proportional torelative variations of the
physical sound intensity dI /I :

dL = K
dI

I
,

for a suitably chosen constantK . After integration we obtain thatL varies logarithmically inI .

L = L0+ K log I

with L0 a conveniently chosen reference level.

As the intensity (the time-averaged energy flux)I is, for a single tone, proportional to the mean
squared acoustic pressurep2

rms, we have the relationL = K log(p2
rms)+ L0. If

L = 2 log10(prms/p0)

for a reference valuep0 = 2 ·10−5 Pascal is taken, we callL the Sound Pressure Level in Bells. The
usual unit is one tenth of it, the decibel.

2Ernst Heinrich Weber, 1834
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2.1.5 Example: a systematic derivation of the Korteweg-de Vries Equation

Introduction

TheKorteweg-de Vriesequation describes weakly nonlinear, weakly dispersive long water waves,i.e.
surface waves with gravity as the restoring force on a inviscid, incompressible, irrotational steady
mean flow with negligible surface tension and a constant horizontal bottom.

The derivation of the equation is not trivial and the number of assumptions is quite large. In most
derivations given in the literature these assumptions are not all or not explicitly given.

The problem

Consider the two-dimensional space−∞ < x < ∞ and 0< y < h + η(x, t) filled with water with
velocity v = ∇φ, constant densityρ0, pressurep and water surfacey = h + η. The dynamics of the
water is given by the equations

φxx + φyy = 0 (2.1)

ρ0φt + 1
2ρ0

(
φ2

x + φ2
y

)
+ p+ ρ0gy= C(t) (2.2)

and boundary conditions

φy = 0 at y = 0 (2.3)

p = p0 at y = h+ η (2.4)

φy = ηxφx + ηt at y = h+ η (2.5)

wherep0 is the assumed constant atmospheric pressure above the water surface.

Equation (2.1) results from mass conservation; equation (2.2) is Bernoulli’s equation or integrated
momentum equation with arbitrary integration constantC(t), which will be chosen here equal to
p0 + ρ0gh; condition (2.3) describes the hard walled bottom; condition (2.4) describes the conti-
nuity of pressure across the water surface; condition (2.5)describes the fact that the water surface
is a streamline. This last equation can be derived as follows. Assume a water particle with position
(x, y) = (X(t),Y(t)) following the surface streamline, and thus satisfying

Y(t) = h+ η(X(t), t). (2.6)

Then condition (2.5) follows by differentiation and notingthat

v(X(t),Y(t)) =
(

dX

dt
,

dY

dt

)
. (2.7)

Anticipating a smooth solution and relatively small perturbations, we expand the conditions aty =
h+ η aroundη = 0 and convert them into conditions aty = h:

φy + ηφyy+ 1
2η

2φyyy+ · · · = ηxφx + ηηxφxy+ · · · + ηt (2.8)

φt + ηφt y + 1
2η

2φt yy+ · · · + 1
2φ

2
x + ηφxφxy+ 1

2η
2(φ2

xy+ φxφxyy

)
+ . . .

+1
2φ

2
y + ηφyφyy+ 1

2η
2(φ2

yy+ φyφyyy

)
+ · · · + gη = 0. (2.9)
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Scaling and non-dimensionalisation

Assume that the typical length scale inx-direction of the waves to be considered isL, and the typical
amplitude of the perturbed surface isa. Assume thata is small compared to water depthh, andh is
small compared toL, in such a way thataL2/h3 = O(1). In other words, if we introduce the small
parameters

ε = a

h
, δ =

(
h

L

)2

(2.10)

it is assumed thatε/δ = O(1).

We further assume that variation ofφ in y scale onh. By trial and error it appears that typical variations
in time scale on

T = L√
gh

(2.11)

for the waves considered. With the above considerations we scale our variables to dimensionless form

φ := agTφ, η := aη, x := Lx, y := hy, t := T t (2.12)

as follows. First we have the boundary conditions aty = 1.

φy + εηφyy+ 1
2ε

2η2φyyy+ · · · = εδηxφx + · · · + δηt (2.13)

φt + εηφt y + 1
2ε

2η2φt yy+ · · · + 1
2εφ

2
x + ε2ηφxφxy+ 1

2ε
3η2(φ2

xy+ φxφxyy

)
+ . . .

+1
2εδ
−1φ2

y + ε2δ−1ηφyφyy+ 1
2ε

3δ−1η2(φ2
yy+ φyφyyy

)
+ · · · + η = 0. (2.14)

Then we have the equation in−∞ < x <∞, 0< y < 1

δφxx + φyy = 0 (2.15)

with boundary condition aty = 0
φy = 0. (2.16)

Asymptotic analysis

If we substitute the expansion
φ = φ0 + δφ1+ δ2φ2 + . . . (2.17)

we get
φ0,yy+ δ(φ0,xx + φ1,yy)+ δ2(φ1,xx + φ2,yy)+ · · · = 0 (2.18)

With the hard-wall boundary condition this results into

φ0 = ψ(x, t) (2.19)

φ1 = A1(x, t) − 1
2 y2ψxx(x, t) (2.20)

φ2 = A2(x, t) − 1
2 y2A1,xx + 1

24y4ψxxxx(x, t) (2.21)

Substitute these results together with the expansion

η = η0+ δη1+ δ2η2+ . . . (2.22)
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into (2.13) and (2.14), then we obtain to leading orders

−ψxx − δA1,xx + 1
6δψxxxx− εη0ψxx = εη0,xψx + η0,t + δη1,t (2.23)

ψt + δA1,t − 1
2δψxxt + 1

2εψ
2
x + η0+ δη1 = 0. (2.24)

For notational convenience we introduce

w(x, t) = ψ(x, t)+ δA1(x, t), ζ(x, t) = η0(x, t) + δη1(x, t). (2.25)

Then we have to the same order of accuracy

ζt + wxx = 1
6δwxxxx− εζwxx− εζxwx, (2.26)

ζ + wt = 1
2δwxxt − 1

2εw
2
x. (2.27)

Further assumptions

It is easily verified that to leading order bothζ andw satisfy the wave equation

ζt t − ζxx = 0, wt t − wxx = 0 (2.28)

with solutions any linear combination of right running waveF(x−t) and a left running waveG(x+t).
For the nonlinear problem this is not productive because we look for slow modulations on a right or
left running wave, whereas a combination would produce kinematically non-essential fast variations.
So we limit ourselves to solutions of the form

ζ := ζ(z, τ ), w := w(z, τ ), where z := x − t, τ := δt, (2.29)

We obtain to the same order of accuracy

−ζz+ δζτ + wzz= 1
6δwzzzz− εζwzz− εζzwz, (2.30)

ζ − wz+ δwτ = −1
2δwzzz− 1

2εw
2
z. (2.31)

Getting the equation

From (2.31) we have
wz = ζ + δwτ + 1

2δwzzz+ 1
2εw

2
z (2.32)

If we substitute this expression forwz into (2.30)

− ζz+ δζτ + ζz+ δwzτ + 1
2δwzzzz+ εwzwzz= 1

6δwzzzz− εζwzz− εζzwz (2.33)

or
ζτ + wzτ + 1

3wzzzz+ εδ−1
(
wzwzz+ ζwzz+ ζzwz

)
= 0 (2.34)

and again usewz = ζ + . . . , we can eliminatew completely from the equation and obtain to the same
order of accuracy

ζτ + 1
6ζzzz+ 3

2εδ
−1ζ ζz = 0 (2.35)

which is (a version of) the celebrated Korteweg-de Vries equation. If we like clean equations, we can
transform in various ways

ζ(z, τ ) = λσ(αz, βτ) (2.36)

(for exampleλ = 1
9δε
−1, α = 1, β = 1

6) to get

σ2+ σ111+ σσ1 = 0 (2.37)
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2.2 Modelling, Nondimensionalisation and Scaling: Assignments

2.2.1 Travel time in cities

A simple model for the travel time by car between two addresses in a big city is: the timeT in minutes
is equal to the distanceL in kilometers plus the numberN of traffic lights passed,

T = L + N.

a) What is this formula if time is measured in hours and distance in miles?
b) Generalise the formula for arbitrary units of time and length.
c) Make this last version dimensionless in a suitable way.

2.2.2 Membrane resonance.

The resonance frequencyω of a freely suspended membrane (like a framedrum, a skin stretched over
a frame without a resonance cavity) is determined by the membrane tensionT , membrane surface
densityσ , membrane diametera, air densityρa and sound speedca. In other words, there is a relation

ω = f (T, σ,a, ρa, ca).

According to Buckingham, this relation can be reduced to a relation between three dimensionless
groups:

frequency ω , dimension 1/s
memb. tension T , ” kg/s2

memb. density σ , ” kg/m2

memb. diameter a , ” m
air density ρa, ” kg/m3

air soundspeed ca , ” m/s





Buckingham: 6− 3= 3 dimensionless groupsG

G = ωα1Tα2σ α3aα4ρα5
a cα6

a

[G] =
(

1

s

)α1
(

kg

s2

)α2
(

kg

m2

)α3

mα4

(
kg

m3

)α5 (m

s

)α6

= m−2α3+α4−3α5+α6s−α1−2α2−α6kgα2+α3+α5 = m0s0kg0

a) Give (mutually independent) examples of the 3 possible dimensionless numbersG.
b) Show that it is possible to write the functional dependence between the frequency and the other

parameters as

Gω = F(G1,G2)

whereGω is the only parameter that depends onω. You may introduce for conveniencecM =
(T/σ )

1
2 , the propagation speed of transversal waves in the membranein the absence of air loading.
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2.2.3 Ship drag: wave and viscosity effects.

A ship of typical sizeL, moving with velocityV in deep water of densityρ and viscosityη, feels a
drag D due to gravity waves and due to viscous friction, apart from density, velocity and geometry
effects. Symbolically, we have

D = f (g, η, ρ,V, L).

12345678901234567890123456789012123456789012345678901234
12345678901234567890123456789012123456789012345678901234
12345678901234567890123456789012123456789012345678901234
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12345678901234567890123456789012123456789012345678901234
12345678901234567890123456789012123456789012345678901234

g L

V

η, ρ

According to Buckingham, this relation can be reduced to a relation between three dimensionless
groups:

drag D , dimension kg m/s2

length L , ” m
velocity V , ” m/s
viscosity η, ” kg/m s
gravity g , ” m/s2

water density ρ, ” kg/m3





Buckingham: 6− 3= 3 dimensionless groupsG

G = Dα1 Lα2Vα3ηα4gα5ρα6

[G] =
(

kg m

s2

)α1

mα2

(m

s

)α3
(

kg

m s

)α4 (m

s2

)α5
(

kg

m3

)α6

= mα1+α2+α3−α4+α5−3α6s−2α1−α3−α4−2α5kgα1+α4+α6 = m0s0kg0

a) Give (mutually independent) examples of the 3 possible dimensionless numbersG.
b) Show that it is possible to write the functional dependence between the drag and the other param-

eters as
GD = F(Gg,Gη)

whereGD is a parameter that depends onD but not ong or η, Gg depends ong but not onD or
η, andGη depends onη but not onD or g.

2.2.4 Sphere in viscous flow

Work out in detail – using Buckingham’s theorem – scaling andnon-dimensionalisation of the problem
of the viscous air resistance (dragD, velocity V) of a sphere (radiusR) in a fluid (densityρ, viscosity
η). What would be a suitable scaling if viscosity dominates the resistance? And what if pressure
difference dominates?
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R

V

Sphere in viscous fluid

length R, dimension m
velocity V , ” m/s
viscosityη, ” kg/m s
density ρ, ” kg/m3





D = f (ρ,V, η, R)

2.2.5 Cooling of a cup of tea.

The total amount of thermal energy in a cup of tea of volumeV , water densityρ, specific heatc and
temperatureT at timet is E(t) = ρcV T(t). According to Newton’s cooling law, the heat flux through
the surfaceA is q = −h A(T−T∞)with heat transfer coefficienth. What is the dimension ofh? Make
the problem dimensionless and determine the characteristic time scale of the problem.

Confirm this by solving the equation for the decaying temperatureT(t)

dE

dt
= q, T(0) = T0.

2.2.6 The velocity of a rowing boat.

Determine the functional dependence of the velocityv of a rowing boat on the numbern of rowers by
using the following modelling assumptions.

The size of the boat scales with the number of rowers (i.e. their volume) but has otherwise the same
shape. So if the volume per rower isG, the volume of the boat isV = nG. Furthermore, the volume
of the boat can be written as a lengthL times a cross sectionA = ℓ2 andL = λℓ for a shapefactorλ.

The drag only depends on the water pressure distribution andis for high enough Reynolds numbers
given byD = 1

2ρv
2ACD, whereρ is the water density andCD the drag coefficient, which is a constant

as it depends only on the shape of the boat.

The required thrust is thereforeF = D, while the necessary power to maintain the velocityv is then
P = d

dt

∫ x F dx′ = Fv. The available power per rower is a fixedp.

2.2.7 A sessile drop with surface tension.

The heighth of a drop of liquid at rest on a horizontal surface with the effect of gravity being balanced
by surface tension is a function of liquid densityρ, volume L3, acceleration of gravityg, surface
tensionγ and contact angleθ . As [h] = m, [ρ] = kg/m3, [L] = m, [g] = m/s2, [γ ] = kg/s2, and
[θ] = 1, we have 6− 3 = 3 dimensionless numbers. One is of course the already dimensionlessθ .
The second dimensionless number is the Bond number, known tocontrol this kind of problems, and
is given by

B = ρgL2

γ
.
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The third is a dimensionless number containingh, leading to a functional relationship given by

h = ℓF(B, θ),

whereF is dimensionless andℓ is an inherent length scale. We have practically two useful choices
for ℓ. One is suitable whenB is small (high relative surface tension) and the drop becomes spherical.
The other is the proper scaling whenB is large (low relative surface tension), such that the drop will
spread out, flat as a pancake, andh≪ L. In particular,h/L = O(B−1/2)

Find these two (mutually independent) possibleℓ1 andℓ2.

2.2.8 The drag of a plate sliding along a thin layer of lubricant.

Find a functional relation for the dragD of a plate of sizeL ×W slipping with velocityV along a
thin layer of grease of thicknessh and viscosityη. Assume that the drag is linearly proportional to the
wetted surface.

length L, dimension m
width W, ” m
velocity V , ” m/s
viscosity η, ” kg/m s
thicknessh, ” m

2.2.9 The suspended cable

A cable, suspended between the pointsX = 0, Y = 0 andX = D, Y = 0, is described as a linear
elastic, geometrically non-linear inextensible bar3 of bending stiffnessE I and weightQ per unit
length.

(0,0) (D,0)
−H ←−

1
2 QL ↑

−→ H
↑ 1

2 QL

Figure 2.1: A suspended cable

At the suspension points the cable is horizontally clamped such that the cable hangs in the vertical
plane through the suspension points. The total lengthL of the cable is larger thanD, so the cable is
not stretched.

In order to keep the cable in position, the suspension pointsapply a reaction force, with horizontal
component−H resp.H , and a vertical componentV , resp.QL−V . From symmetry we already have
V = QL−V soV = 1

2 QL is known. On the other hand,H , the force that keeps the cable ends apart,
is unknown.

3A so called Euler-Bernoulli bar.
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Let s be the arc length along the cable, andψ(s) the tangent angle with the horizon. Then the cartesian
co-ordinates(X(s),Y(s)) of a point on the cable are given by

X(s) =
∫ s

0
cosψ(s′)ds′, Y(s) =

∫ s

0
sinψ(s′)ds′.

The shape of the cableψ(s) and the necessary forceH , are determined by the following differential
equation and boundary conditions

E I
d2ψ

ds2
= H sinψ − (Qs− V) cosψ

ψ(0) = 0, ψ(L) = 0, X(L) = D, Y(L) = 0.

a. Make the equations and boundary conditions dimensionless by scaling all lengths onL.
How many (and which) dimensionless problem parameters do wehave? How does this conform
to Buckingham’s Theorem?

b. Under what conditions can we approximate the equation by

0= H sinψ − (Qs− V) cosψ.

Can we keep all the boundary conditions? Which would you keep? Solve the remaining equation.
c. Under what conditions can we approximate the equation by

E I
d2ψ

ds2
= Hψ − (Qs− V).

Can we keep all the boundary conditions? Do we have to adapt any to bring it in line with the used
approximation? Can you solve the remaining equation (up to anumerical evaluation)?

2.2.10 Electrically heated metal

A piece of metal� of sizeL is heated, from an initial stateT(x, t) ≡ 0, to a temperature distribution
T by applying att = 0 an electric field with potentialψ and typical voltageV (Fig. 2.2). This heat

L

�

Figure 2.2: A piece of metal heated by an electric field.

source, the energy dissipation of the electric field, is given by the inhomogeneous termσ |∇ψ |2 in the
following inhomogeneous heat equation

C
∂T

∂t
= κ∇2T + σ |∇ψ |2.
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The edges are kept atT = 0, yielding a dissipation of thermal energy. As time proceeds, the tempera-
ture distribution will converge to a steady state corresponding to an equilibrium of heat production by
the source and heat loss via the edges. We are interested in the typical time this takes and the typical
final temperature.

If we introduce the formal scalingT = T0u, t = t0τ , x = Lξ , andψ = V9, then we get

CT0

t0

∂u

∂τ
= κT0

L2
∇2

ξ u+ σV2

L2
|∇ξ9|2.

a. If we take the final (steady state) situation as reference,what would then be our choice forT0?
b. What is then the choice for the timet0?

Note that the boundary conditions are rather important. If the edges were thermally isolated, we would,
at least initially, have no temperature gradients scaling on L, and the diffusion termκ∇2T would be
negligible. Only the storage termC ∂

∂t T would balance the source term, and there would be no other
temperature to scale on thanσV2t0/CL2. In other words, the temperature would rise approximately
linearly in time.

2.2.11 Traffic waves

A simple (but nonlinear) one-dimensional wave equation, used (for example) to model traffic flow
densityρ at positionx and timet , is

∂ρ

∂t
+ C(ρ)

∂ρ

∂x
= 0, ρ(x,0) = F(x).

Since dimensional quantities must include an inherent scale, we can write (with dimensionless shape
functionsg and f )

C(u) = C0g
( ρ

D

)
, F(x) = ρ0 f

( x

L

)
.

a. Make the problem dimensionless in a sensible way. What is the remaining dimensionless param-
eter?

b. Show that the solutionρ is implicitly given by

ρ = F(x − C(ρ)t).

It is sufficient to consider the original equation. The dimensionless solution is similar.

2.2.12 The Korteweg-de Vries equation

A version of the Korteweg-de Vries equation (an equation forcertain types of water waves) is given
by

Aζt + Bζxxx+ Cζ ζx = 0

Rescale theζ = λσ , x = αz andt = βτ , such that the remaining equation has only coefficients equal
to 1.
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2.2.13 Just an equation

x satisfies the following equation

ax2 + bf
( x

L

)
= 0

with parametersa, b andL, and dimensionless functionf with dimensionless argument, while[x] =
meters and[b] = seconds.

a) What are the dimensions ofa andL?
b) Find, by scalingx = λX for some suitableλ and collecting parameters in dimensionless groups

R, equivalent equations of the form

X2+ R f(X) = 0, X2+ f (RX) = 0.

c) Under what conditions can the original equation be approximated by

f
( x

L

)
= 0

2.2.14 The pendulum

Consider a pendulum consisting of a bob of massm, suspended from a fixed, massless support of
length L. The acceleration of gravity isg. Depending on time variablet , the pendulum angular dis-
placementφ(t) swings between angle−α andα.

angle φ, dimension -
angle α, ” -
time t , ” s
mass m, ” kg
length L, ” m
gravity g, ” m/s2

a) What is the inherent time scale of the problem?
b) The motion is given by the equation

mL
d2φ

dt2
+mgsinφ = 0.

Using a), make this equation dimensionless.
c) Under what condition can we approximate the dimensionless equation by

d2φ

dτ 2
+ φ − 1

6φ
3 = 0
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2.2.15 Heat convection and diffusion

Consider a steady flow fieldv = v(x) of air of uniform densityρ and specific heat capacityc, and
temperatureT = T(x, t) at positionx and timet . The heat is convected by the flow and diffused by
Fourier’s law for heat conduction, leading to the equations

ρc

(
∂T

∂t
+ v·∇T

)
= −∇·q, q = −κ∇T,

whereq is the heat flux density andκ is the coefficient of conductivity.

Assume that the typical velocity of the velocity field isU0, and the length scale of the variation of
both the flow field and the temperature field isL. Neglecting transient effects we have thus a typical
time scale ofL/U0.

temperature T , dimension K
length scale L, ” m
velocity U0, ” m/s
density ρ, ” kg/m3

heat flux density q, ” W/ m2

specific heat capacityc , ” J/kgK
conductivity κ, ” W/mK

a) Under what conditions (i.e. for which small parameter) can the diffusion be neglected, such that
we obtain the simplified equation

∂T

∂t
+ v·∇T = 0

b) Show that (under these conditions) the temperature is constant along any streamlinex = ξ(t),
given by

v = dξ

dt
.

2.2.16 Heat conduction in a long bar

A semi-infinite isolated metal bar, given by 06 x <∞, is heated by a uniform heat source of constant
flux densityQ at x = 0, starting fromt = 0. Assume that the initial temperatureT = 0, such thatT
is linearly proportional toQ. The bar metal has a specific heat capacityc, densityρ and conductivity
κ. Due to the uniform source and the isolation, the temperature along a cross section is uniform.

temperature T , dimension K
length x, ” m
time t , ” s
density ρ, ” kg/m3

specific heat capacityc , ” J/kgK
conductivity κ, ” W/mK
heat source Q, ” W/m2
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a) According to Buckingham’s5 theorem, there are 6− 4= 2 dimensionless groups possible (note
thatT ∝ Q, soT/Q is to be considered as one variable). Give examples of such groups.

b) Show, by using a), that the most general form forT(x, t) is4

T(x, t) = Qx

κ
F

(√
x2ρc

κt

)
.

c) Assume thatT satisfies the equation

ρc
∂T

∂t
= κ ∂

2T

∂x2
,

and define thesimilarity variableη =
√

x2ρc/κt . Derive the (ordinary) differential equation in
the variableη for function F(η) of b). Use the chain rule carefully when differentiatingT to x and
t . Make sure that the final equationonlydepends onη and contains nox or t dependence anymore.

The solution of this equation is not standard but can be found(for example) by Mathematica or
Wolfram Alpha.

2.2.17 A simple balloon

A balloon rises in the atmosphere of densityρa such that it is at heighth(t) at time t . The balloon
of massm, fixed volumeV and cross sectional surfaceA is subject to inertia−mh′′, Archimedean
(buoyancy) forcegρaV , weight−mgand air drag−1

2ρaCd A(h′)2, whereg = 9.8 m/s2 is the acceler-
ation of gravity, and drag coefficientCd depends on the geometry but is for a sphere (and high enough
Reynolds number) in the order of 0.5.

Together these forces cancel out each other, so altogether we have the following equation for the
dynamics of the balloon

m
d2h

dt2
= gρaV − gm− 1

2
ρa

(
dh

dt

)2

Cd A.

Assume thath(0) = 0 andh′(0) = 0. The atmospheric air density will vary (in the troposphere, i.e.
for 0 6 h 6 11 km) with the height according to

ρa(h) = ρ0

(
1− h

L

)α
kg/m3, with ρ0 = 1.225 kg/m3, L = 44.33 km, α = 4.256.

In practice a flexible balloon will grow in size with the decreasing atmospheric pressure, but we will
ignore this and assume that the material is very stiff.

Make the equation dimensionless on the inherent length and time scales. There are two natural length
scales in the problem (the atmospheric variationL and the diameter of the balloon∼ V3/2,∼ A1/2).
What seems to be the most sensible one? Try both if you hesitate. The suitable time scale can be found
by assuming that the dynamics is dominated by the balance between the buoyancy and the drag. When
is this possibly not the case?

4The seemingly differentT(x, t) = (Qt/ρcx)G
(√

x2ρc/κ t
)

is in reality of the same form. WriteF(η) = η−2G(η).
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Introduce convenient dimensionless parameters and (in thecase ofρa) shape function. Can you inter-
pret these parameters? For what conditions can we neglect the inertia term? Is this reasonable for a
balloon ofm = 1 kg, V = 2 m3 and A = 1.9 m2. What about the initial conditions? The remaining
equation is still difficult, but can you solve it if you assumethatm/ρ0V is small, while 1− h/L is not
small?

2.2.18 A pulsating sphere

The radially symmetric sound field of a pulsating spherer = a0+a(t) (with a small) in a medium with
mean densityρ0 and sound speedc0 is described by the following (linearised) equations for pressure
perturbationp, density perturbationρ and velocity perturbationv.

∂ρ

∂t
+ ρ0

(
∂v

∂r
+ 2

v

r

)
= 0,

ρ0
∂v

∂t
+ ∂p

∂r
= 0,

p− c2
0ρ = 0.

while

v = ∂a

∂t
at r = a0.

If the sphere pulsates harmonically with frequencyω, we write for convenience

a = Re(â eiωt ), p = Re( p̂ eiωt), v = Re(v̂ eiωt ), ρ = Re(ρ̂ eiωt ).

leading to the equations (we eliminateρ)

iω p̂+ ρ0c
2
0

(
∂v̂

∂r
+ 2

v̂

r

)
= 0,

iωρ0v̂ +
∂ p̂

∂r
= 0.

with
v̂ = iωâ at r = a0.

The proper solution of the equations can be shown to be

p̂ = A

r
e−ikr

v̂ = 1

ρ0c0

A

r

(
1+ 1

ikr

)
e−ikr

with constantA to be determined, and the acoustic wavenumber

k = ω

c0
= 2π

λ

whereλ is the free field wavelength.

a. DetermineA by applying the boundary condition atr = a0.
b. Scalep̂ andv̂ on â/a0, and make dimensionless:p̂ onρc2

0 andv̂ on c0. Lengths can be scaled on
a0 and on 1/k. Do both. Their ratio, dimensionless numberε = ka0, is called Helmholtz number.

c. Simplify the formulas for small source size (known as acompact source), i.e.ε = ka0≪ 1. What
do you get in each case of scaling? Can you interpret the results?
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2.2.19 Similarity solutions for non-linear and linear diffusion

Consider the temperatureT due to a heat source atr = 0 in a spherically symmetric environment of
specific heat capacitycp, densityρ and conductivityκ.

All parameters are constant, exceptκ which is a function of the absolute temperatureT . We assume
hereκ = κ0Tn−1. For example, for diamond,κ0 = 27 530 W/mKn andn− 1= −1.26.

We have the equation

ρcp
∂T

∂t
= ∇·(κ∇T

)

a) ScaleT = T0u such that we obtain
∂u

∂t
= ∇2un

b) Consider spherically symmetric similarity solutions ofthe form

u = u(r, t) = tαF(z), z= r t−β , r = |x|.

What are the restrictions onα andβ? What is the remaining equation forF?
c) Find a solution of the formF(z) = Czm for particular choice ofm andC.

We continue with the more usual model of linear diffusion,i.e. wheren = 1.

d) Scale timet such that we obtain forT(r, t) = u(r, t ′) (we skip the prime in the following)

∂u

∂t
= ∇2u

e) Consider again spherically symmetric similarity solutions of the form

u = u(r, t) = tαF(z), z= r t−β , r = |x|.

What are the restrictions onα andβ? What is the remaining equation forF? Find the general
solution by using Maple.

f) Assume that the heat source is a source of constant fluxQ, which corresponds to a condition

∫

r=ε
−κ∇u·n dS= −4πε2κ

∂u

∂r

∣∣∣
r=ε
= Q

for any spherer = ε, in particular forε→0. For what value ofα is this condition satisfied? (Use
Maple to find the behaviour of the integrand for smallr .)

g) What is, for this choice ofα, the resulting solution if we add the boundary condition that u→
constant forr→∞ ? (Use Maple.)
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2.2.20 Falling through the center of the earth

Although it is unlikely that such a tunnel will ever be excavated in the near future, we assume a
vacuum straight tunnel right through the center of the earth. It connects two opposite points on the
earth’s surface, separated by the earth’s diameter 2R. If the earth’s mass densityρ is uniform, then
according to Newton’s law of gravitation any object in the tunnel at radial positionr is attracted only
by the part of the earth’s mass that is inside the concentric sphere of radiusr . The proportionality
constant is the universal gravity constantG.

At time t = 0 at positionr = R we drop a stone of negligible mass (compared to the mass of the
earth) with zero initial speed. We wait until the stone returns at timet = T (about 84 minutes).

The problem parameters and variables, according to our model, are

radius R, dimension m
position r , ” m
time t , ” s
return time T , ” s
density ρ, ” kg/m3

gravity constantG, ” m3/s2kg

Show by dimensional arguments thatT depends only onρ andG, and not onR. In other words, at
whatever depth we release the stone, the return time is the same.

2.2.21 Energy consumption of a car

Consider a car of massm at positionx(t) and velocityv(t) = x′(t) at time t , moving fromx = 0
to x = L in time t = 0 to t = T along a road of heighth(x) at positionx. The car is subject to
acceleration forcemv′, gravity force−mgh′(x), air dragbv|v| = 1

2ρACDv|v| (whereρ is the density
of air, A is the car’s frontal area, andCD is its drag coefficient), internal frictioncv, and engine thrust
F(t). Assuming an always positive velocity, we have then the balance of forces

mv′ + bv2+ cv +mgh′(x) = F(t).

We study the extra energy consumption due to velocity fluctuations. by comparing the energy con-
sumption for a steady velocityv(t) = V0 = L/T with a velocity fluctuating around averageV0.

The necessary energy is the work done fromx = 0 to L, or the powerFv integrated fromt = 0 to T .

E =
∫ L

0
F dx =

∫ T

0
Fv dt.

Check (by integrating the equation) that, ifv(0) = v(T) andh(0) = h(L), the energy only depends
on the friction terms, i.e.b andc, and therefore not onm.

Make time dimensionless ast = Tτ and position asx = Ls. Sincem plays no role, we make masses
dimensionless onbL, and the other variables similarly. Assumev(t) = V0(1+ εu(τ )) with ε small,
u(0) = u(1) = 0, andu normalised by (without normalisation ofu, ε is not defined)

∫ 1

0
u2 dτ = 1.

Find the extra energy consumption due to the fluctuating velocity, in dimensionless form, to leading
order inε.
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Chapter 3

Asymptotic Analysis

3.1 Asymptotic approximations and expansions

Before we can introduce the methods, we have to define our terminology of asymptotic approxima-
tions and asymptotic expansions. We will start with an intuitive description, followed by a pointwise
enumeration.

3.1.1 Asymptotic approximations

In order to give a qualitative description of the behaviour of a function f with parameterε near a point
of interest, sayε = 0 (equivalent to any other value by a simple translation), wehave the so-called
order symbolsO, o, andOs; see Section 3.2. Oftenε = 0 is the lower limit of a parameter range, and
we have the tacit assumption thatε ↓ 0.

Definition 3.1 ϕ(ε) is an asymptotic approximation to f(ε) asε→ 0 if

f (ε) = ϕ(ε)+ o(ϕ(ε)) as ε→ 0,

sometimes more compactly denoted by f∼ ϕ.

If f andϕ depend onx, this definition remains valid pointwise,i.e. for x fixed. It is, however, useful
to extend the definition to uniformly valid approximations.

Definition 3.2 Let f(x; ε) andϕ(x; ε) be continuous functions forx ∈ D and0 < ε < a. We call
ϕ(x; ε) a uniform asymptotic approximation to f(x; ε) for x ∈ D as ε → 0, if for any positive
numberδ there is anε1 (independent ofx andε) such that

| f (x; ε)− ϕ(x; ε)| 6 δ|ϕ(x; ε)| for x ∈ D and0< ε < ε1.

We write: f(x; ε) = ϕ(x; ε)+o(ϕ(x; ε)) uniformly in x ∈ D as ε→ 0. Note thatD may depend
on ε.

35



FUNDAMENTALS AND APPLICATIONS OFPERTURBATION METHODS IN FLUID DYNAMICS

Example 3.1 Let D = [0,1] and 0< ε < 1. Then we have cos(εx) = 1+ o(1) as ε→ 0 uniformly
in D, since for any givenδ we can chooseε1 =

√
δ, such that| cos(εx)− 1| 6 ε2x2 6 ε2

1 = δ. �

Example 3.2 Although cos(x/ε) = O(1) uniformly in x ∈ [0,1] for ε→ 0, there is no constantK such
that cos(x/ε) = K + o(1). �

Example 3.3 x + sin(εx) + e−x/ε = x + εx + O(ε3) asε → 0 for all x 6= 0, but not uniformly in
x ∈ [0,1]. More precisely, it is not uniformly inx ∈ [δ(ε),1] for anyδ = O(ε) and uniformly ifε = o(δ).
If x = O(ε), the otherwise exponentially small term is not small anymore. This is illustrated by the
Figure 3.1. The difference between the original function and its non-uniform asymptotic approximation

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1x

Figure 3.1: A plot ofx + sin(εx) + e−x/ε and its non-uniform asymptotic approximationx + εx for
ε = 0.01.

is typically large in a neighbourhood ofx = 0, while the size of this neighbourhood isx = O(ε). This
neighbourhood is an example of a boundary layer. The occurrence and behaviour of boundary layers will
be discussed in more detail in Section 6. �

3.1.2 Asymptotic expansions

Asymptotic approximations are usually structured in the form of a series expansion that helps us to
construct an approximation systematically.

Definition 3.3 The sequence{µn(ε)}∞n=0 is called an asymptotic sequence, ifµn+1(ε) = o(µn(ε)), as
ε→ 0, for each n= 0,1,2, · · · .

Example 3.4 Examples of asymptotic sequences (asε→ 0) are

µn(ε) = εn, µn(ε) = ε
1
2n
, µn(ε) = tann(ε), µn(ε) = ln(ε)−n,

µn(ε) = εp ln(ε)q where p = 0,1,2..., q = 0...p and n = 1
2 p(p+ 3)− q. �

Definition 3.4 If {µn(ε)}∞n=0 is an asymptotic sequence, then f(ε) has an asymptotic expansion of N
terms with respect to this sequence, denoted by

f (ε) ∼
N−1∑

n=0

anµn(ε),
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where the coefficients an are independent ofε, if

f (ε)−
M∑

n=0

anµn(ε) = o(µM (ε)) as ε→ 0

for each M= 0, . . . , N − 1. µn(ε) is called a gauge-function. Ifµn(ε) = εn, we call the expansion
an asymptotic power series.

Definition 3.5 Two functions f and g are asymptotically equal up to N terms, with respect to the
asymptotic sequence{µn}, if f − g = o(µN). If the remaining error is clear from the context, this is
sometimes denoted as f∼ g.

Asymptotic expansions based on the same gauge functions maybe added. They may be multiplied if
the products of the gauge functions can be asymptotically ordered.

In contrast to ordinary series expansions, defined for an infinite number of terms, in asymptotic expan-
sions only a finite (N) number of terms are considered. ForN → ∞ the series may either converge
or diverge, but this is irrelevant for the asymptotic behaviour. In addition it may be worthwhile to note
that it is not necessary for a convergent asymptotic expansion to converge to the expanded function.

For given{µn(ε)}∞n=0, the coefficientsan can be determined uniquely by the following recursive pro-
cedure (providedµn are nonzero forε near 0 and each of the limits below exist)

a0 = lim
ε→0

f (ε)

µ0(ε)
, a1 = lim

ε→0

f (ε)− a0µ0(ε)

µ1(ε)
, . . . aN−1 = lim

ε→0

f (ε)−∑N−2
n=0 anµn(ε)

µN−1(ε)
.

Example 3.5 A function may have different asymptotic expansions.

tan(ε) = ε + 1
3ε

3+ 2
15ε

5+ O(ε7)

= sinε + 1
2(sinε)3+ 3

8(sinε)5+ O((sinε)7)

= ε cosε + 5
6(ε cosε)3+ 161

120(ε cosε)5+ O((ε cosε)7). �

Example 3.6 The following asymptotic expansion, related to the exponential integral Ei,

ε−1 e−1/ε Ei(1/ε) =
N∑

n=0

n! εn + o(εN), where Ei(x) = −

∫ x

−∞

et

t
dt,

diverges asN→∞ if ε 6= 0. The accuracy increases withN, but on a smaller interval [49]. �

Example 3.7 Different functions may have the same asymptotic expansion.

cos(ε) = 1− 1
2ε

2+ 1
24ε

4 + O(ε6),

cos(ε)+ e−1/ε = 1− 1
2ε

2+ 1
24ε

4 + O(ε6).

Note that both asymptotic expansions, considered as regular power series inε, converge to cos(ε) rather
than cos(ε)+ e−1/ε. �
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Theorem 3.8 An asymptotic expansion vanishes only if the coefficients vanish, i.e.
{
a0µ0(ε)+ a1µ1(ε)+ a2µ2(ε)+ . . . = 0 (ε→ 0)

}
⇔

{
a0 = a1 = a2 = . . . = 0

}
.

Proof
The sequence{µn} is asymptotically ordered, so bothµ0a0 = −µ1a1− . . . = O(µ1) andµ1 = o(µ0).
So there is a positive constantK such that for any positiveδ there is anε-interval where|a0µ0| <
δK |µ0|, which is only possible ifa0 = 0. This may now be repeated fora1, etc.This proves⇒. The
proof of⇐ is trivial. �

3.2 Basic definitions and theorems

1. O (Big O)
f (ε) = O(ϕ(ε)) as ε→ 0 if there are a fixed constantK > 0 and an interval(0, ε1) such that

| f (ε)| 6 K |ϕ(ε)| for 0< ε < ε1.

Intuitive interpretation: f can be embraced completely by|ϕ| (up to a multiplicative constant)
in a neighbourhood of 0. A crude estimate (for example sinε = O(1/ε)) is not incorrect, but a
sharp estimate is more informative.

Examples: sinε = O(ε), (1− ε)−1 = O(1), sin(1/ε) = O(1), (ε + ε2)−1 = O(ε−1),
ln((1+ ε)/ε) = O(ln ε).

2. o (smallo)
f (ε) = o(ϕ(ε)) as ε→ 0 if for every δ > 0 there is an interval(0, ε1) such that

| f (ε)| 6 δ|ϕ(ε)| for 0< ε < ε1.

Intuitive interpretation: f is always smaller than any multiple (however small) of|ϕ| in a neigh-
bourhood of 0. Again, a crude estimate is not incorrect, but asharp estimate is more informative.

Examples: sin(2ε) = o(1), cosε = o(ε−1), e−a/ε = o(εn) for anya > 0 and anyn.

3. Os (sharpO)
f (ε) = Os(ϕ(ε)) as ε→ 0 if f (ε) = O(ϕ(ε)) and f (ε) 6= o(ϕ(ε)).

Intuitive interpretation: f behaves exactly the same (up to a multiplicative constant) as ϕ in a
neighbourhood of 0.

Examples: 2 sinε = Os(ε), 3 cosε = Os(1), but there isno nsuch that lnε = Os(ε
n).

4. Similar behaviour.

(i) If f = o(ϕ) then f = O(ϕ).

(ii) If lim
ε↓0

∣∣∣∣
f (ε)

ϕ(ε)

∣∣∣∣ = 0 then f = o(ϕ).

(iii) If lim
ε↓0

∣∣∣∣
f (ε)

ϕ(ε)

∣∣∣∣ = L ∈ [0,∞) then f = O(ϕ).

(iv) If lim
ε↓0

∣∣∣∣
f (ε)

ϕ(ε)

∣∣∣∣ = L ∈ (0,∞) then f = Os(ϕ).
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(v) If f = O(ϕ) and ϕ = O( f ) then f = Os(ϕ).

The reverse is certainly not true: (i) sinε = O(ε) but sinε 6= o(ε). (ii) If f ≡ 0 andϕ ≡ 0 on
an interval containingε = 0, then f = o(ϕ) but lim

ε↓0
| f/ϕ| does not exist. (iii,iv)ε sin(1/ε) =

Os(ε), but lim
ε↓0
| sin(1/ε)| does not exist. (v) sin(1/ε) = Os(1) but 1 6= O(sin(1/ε)).

5. Asymptotic approximation.
ϕ(ε) is an asymptotic approximation tof (ε) asε→ 0, denoted byf ∼ ϕ, if

f (ε) = ϕ(ε)+ o(ϕ(ε)) as ε→ 0,

Intuitive interpretation: If lim
ε→0

f/ϕ = 1 then f ∼ ϕ. Note: f ∼ 0 is only possible iff ≡ 0.

Examples: sinε ∼ ε, (ε + ε2)−1 ∼ 1/ε, ln(aε) ∼ ln ε for anya > 0.

6. Pointwise asymptotic approximation.
ϕ(x, ε) is a pointwise asymptotic approximation tof (x, ε) asε→ 0 if

f (x, ε) ∼ ϕ(x, ε) for fixed x.

Intuitive interpretation: f (x, ε) is approximated asymptotically better and better byϕ(x, ε) for
ε→ 0 andx fixed. We don’t know anything yet if we allowx to become small or large (within
the domain).

Examples: sin(x + ε) ∼ sinx and sinx 6= 0, 1/(ε + x) ∼ 1/x andx 6= 0. Note that in the last
example the approximation fails if we would scalex = εnt for anyn > 1.

7. Uniform asymptotic approximation.
The continuous functionϕ(x, ε) is a uniform asymptotic approximation to the continuous func-
tion f (x, ε) for x ∈ D asε→ 0, if the wayϕ approachesf is the same for allx.
More precisely: if for any positive numberδ there is anε1 (independent ofx andε) such that

| f (x, ε)− ϕ(x, ε)| 6 δ|ϕ(x, ε)| for x ∈ D and 0< ε < ε1.

Intuitive interpretation:
f (x, ε) is approximated uniformly byϕ(x, ε), if the approximation is preserved with any scal-
ing of x = a(ε)+ b(ε)t , valid in the domain off . In formulas (with a scalingx = εt ∈ [0, K ]
as an example):

if f (x, ε) ∼ ϕ(x, ε) and ϕ(εt, ε) ∼ g(t, ε), then also f (εt, ε) ∼ g(t, ε).

Examples:

cos(ε)+ e−x/ε ∼ 1 only pointwise forx ∈ (0,∞). Not uniform: takex = εt.
cos(ε)+ e−x/ε ∼ 1 pointwise and uniformly forx ∈ [a,∞),a > 0.

cos(ε)+ e−t ∼ 1+ e−t uniformly for t ∈ [0,∞).

sin(εx + ε) ∼ ε(x + 1) only pointwise forx ∈ (−∞,∞). Takex = t/ε.

sin(εx + ε) ∼ ε(x + 1) uniformly for x ∈ [−a,a], 0< a <∞.
2+ sin( t + ε) ∼ 2+ sin(t) uniformly for t ∈ (−∞,∞).

2+ eε sin(t + εt) ∼ 2+ sin(t) only pointwise fort ∈ R. Note that sin(t + εt) = sint + O(εt).

2+ eε sin(τ ) ∼ 2+ sin(τ ) uniform for τ ∈ R. Note that we rescaledτ = (1+ ε)t.
Uniform impliespointwise, but the reverse is not necessarily true. See the above examples.
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8. If f andϕ are absolutely integrable, andf (x, ε) ∼ ϕ(x, ε) uniformly on a domainD , while∫
D
|ϕ|dx = O(

∫
D
ϕdx), then

∫
D

f (x, ε)dx ∼
∫
D
ϕ(x, ε)dx.

9. Asymptotic sequence.
The sequence{µn(ε)} is called an asymptotic sequence, ifµn+1 = o(µn) asε → 0 for each
n = 0,1,2, · · · . This is denoted symbolically

µ0≫ µ1≫ µ2≫ · · · ≫ µn ≫ . . .

Common examples areµn = εn, or more generallyµn = δ(ε)n if δ(ε) = o(1). Combinations
of ε and ln(ε) yield the sequenceµn,k = εn ln(ε)k, wherek = n, · · ·,0 and

ln ε ≫ 1≫ ε ln(ε)≫ ε ≫ ε2 ln(ε)2≫ ε2 ln(ε)≫ ε2≫ . . .

10. Asymptotic expansion.
If {µn(ε)} is an asymptotic sequence, thenf (ε) has an asymptotic expansion ofN + 1 terms
with respect to this sequence, denoted by

f (ε) ∼
N∑

n=0

anµn(ε),

where the coefficientsan are independent ofε, if for eachM = 0, . . . , N

f (ε)−
M∑

n=0

anµn(ε) = o(µM (ε)) as ε→ 0.

µn(ε) is called agauge functionor order function .

If µn(ε) = εn, we call the expansion an asymptotic power series. Any Taylor series inε around
ε = 0 is also an asymptotic power series.

Asymptotic expansions, based on Taylor expansions inεn, of elementary functions:

eε = 1+ ε + 1
2ε

2+ . . .
sin(ε) = ε − 1

6ε
3+ . . .

cos(ε) = 1− 1
2ε

2+ . . .
1

1− ε = 1+ ε + ε2+ . . .

ln(1− ε) = −ε − 1
2ε

2− 1
3ε

3− . . .
ln(1+ ε) = ε − 1

2ε
2+ 1

3ε
3− . . .

(1+ ε)α = 1+ αε + 1
2α(α − 1)ε2+ . . .

Examples of combinations (which are sometimes not Taylor expansions inεn)

εε = eε ln ε = 1+ ε ln ε + 1
2ε

2(ln ε)2+ . . .
ln(sinε) = ln ε − 1

6ε
2+ . . .

ln(cosε) = −1
2ε

2− 1
12ε

4+ . . .
1

1− f (ε)
= 1+ f (ε)+ f (ε)2+ . . . , if f (ε) = o(1).
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11. How to determine the coefficients.
The coefficientsan of an asymptotic expansion can be determined uniquely (for givenµn(ε))
by the following recursive procedure

a0 = lim
ε→0

f (ε)

µ0(ε)
, a1 = lim

ε→0

f (ε)− a0µ0(ε)

µ1(ε)
, . . . aN = lim

ε→0

f (ε)−∑N−1
n=0 anµn(ε)

µN(ε)
,

providedµn are nonzero forε near 0 and each of the limits exist.

12. Convergent and asymptotic.
Let {µn(ε)} be an asymptotic sequence, withµ0 = 1 andε > 0, and let

f (ε) =
N∑

n=0

anµn(ε)+ RN(ε).

If the series converges forN → ∞, then limN→∞ RN(ε) = 0. If the series is an asymptotic
expansion forε→ 0, then limε→0 RN(ε) = 0. A convergent power series (like a Taylor series)
is also an asymptotic expansion. An asymptotic expansion isnot necessarily convergent.

13. Asymptotically equal
Two functions f andg are asymptotically equal up toN terms, with respect to the asymptotic
sequence{µn}, if f − g = o(µN).

14. The fundamental theorem of asymptotic expansions [10]
An asymptotic expansion vanishes if and only if the coefficients vanish, i.e.

{
a0µ0(ε)+ a1µ1(ε)+ a2µ2(ε)+ . . . = 0 (ε→ 0)

}
⇔

{
a0 = a1 = a2 = . . . = 0

}
.

15. Poincaré expansion.
Let {µn(ε)} be an asymptotic sequence oforder functions. If f (x, ε) has an asymptotic expan-
sion with respect to this sequence, given by

f (x, ε) ∼
N∑

n=0

an(x)µn(ε),

where theshape functionsan(x) areindependentof ε, then this expansion is called a Poincaré
expansion.Note: a Poincaré expansion isneverPoincaré anymore after (nontrivial) rescalingx.

16. Regular and singular expansion.
If a Poincaré expansion is uniform inx on a given domainD this expansion is called a regular
expansion. Else, the expansion is called a singular expansion. Examples: sin(x + ε) ∼ sinx +
ε cosx + O(ε2) is uniform onR. (x + ε)−1 = x−1 − εx−2 + O(ε2) is uniform on[A,∞) for
any A > 0.

Note: A typical indication for non-uniformity is a scaling, suchthat the asymptotic ordering of
the terms is violated. In other words, a scaledx = x(ε) with a1(x)µ1(ε) 6≪ a0(x)µ0(ε), etc.

17. Role of scaling.
A Poincaré expansion and its region of uniformity depends (among other things) on the chosen
scalingx = x0+ δ(ε)ξ and the domainD .
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For example,e−x/ε+ sin(x + ε) = sin(x)+ O(ε) is regular on any positive interval[a,b] with
a,b = O(1) but is singular on(0,b], whilee−t + sin(εt+ε) = e−t +ε(t+1)+O(ε3) is regular
on any finite fixed interval.

18. Manipulations of asymptotic expansions.
Let f (x, ε) andg(x, ε) have Poincaré expansions onD with asymptotic sequence{µn(ε)}

f (x, ε) = µ0(ε)a0(x)+ µ1(ε)a1(x)+ · · ·
g(x, ε) = µ0(ε)b0(x)+ µ1(ε)b1(x)+ · · ·

Addition. Then the sum has the following asymptotic expansion

f + g = µ0(a0+ b0)+ µ1(a1+ b1)+ · · ·

Multiplication. If {µkµn} can be asymptotically ordered to the asymptotic sequence{γn}, with
γ0 = µ2

0, γ1 = µ0µ1, γ2 = O(µ0µ2+ µ2
1), etc., then the product has the asymptotic expansion

f g = (µ0a0+ µ1a1 + · · · )(µ0b0+ µ1b1 + · · · ) = γ0a0b0+ γ1(a0b1+ a1b0)+ γ2(· · · )+ · · ·

Integration.If the approximation is uniform,f , a0, a1, etc. are absolute-integrable onD , while∫
D

an dx 6= 0, then we can integrate term by term and obtain the asymptotic expansion

∫

D

f (x, ε)dx = µ0

∫

D

a0(x)dx + µ1

∫

D

a1(x)dx + · · ·

Differentiation.This is the least obvious. Consider the counter example

f (x, ε) = 1
2x2 + ε cos

(
x
ε

)
= 1

2x2 + O(ε), but f ′(x, ε) = x − sin
(

x
ε

)
6= x + O(ε).

However, if both f and f ′ have asymptotic expansions with asymptotic sequence{µn(ε)}, say

f (x, ε) = µ0(ε)a0(x)+ µ1(ε)a1(x)+ · · · , f ′(x, ε) = µ0(ε)q0(x)+ µ1(ε)q1(x)+ · · ·

then the derivative of the expansion off is the expansion of derivativef ′, and satisfy

a′0 = q0, a′1 = q1, etc.
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3.3 Asymptotic Expansions: Applications

3.3.1 General procedure for algebraic equations

The existence of an asymptotic expansion yields a class of methods to solve problems that depend on
a parameter which is typically small in the range of interest. Such methods are calledperturbation
methods. The importance of these methods are two-fold. They provideanalytic solutions to otherwise
intractable problems, and the asymptotic structure of the solution provides instant insight into the
dominating qualities.

If x(ε) is implicitly given as the solution of an algebraic equation

F (x, ε) = 0 (3.1)

we may solve this asymptotically forε→ 0 in the following steps.

(i) First we prove, make plausible, or check in one way or another that a solutionexists, and try to
find out if this solution is unique or there are more. This is not really an asymptotic question,
but important because the approximations involved later inthe solution process may fool us: the
approximated equation may have no solutions while the original has, or the other way round.
Sometimes the existence of solutions is obvious straightaway, but sometimes global arguments
should be invoked.

(ii) Then we have to find the order of magnitude of the sought solution, sayx(ε) = γ (ε)X(ε) with
X = Os(1). Unless we have scaled the problem already correctly, the solution is not necessarily
O(1). Often, we cannot decide with certainty, and we have to make asuitable assumption that
is consistent with all the information we have, and proceed to construct successfully a solution
or until we encounter a contradiction.

Another point of concern is the fact that there may be more solutions with different scalings.

The scaling functionγ (ε) is found such that it yields a meaningfulX = Os(1) in the limit
ε→ 0. This is called adistinguished limit, while the reduced equation forX(0), i.e.F0(X) = 0,
is called asignificant degeneration(there may be more than one.) We can rescaleF andx such
F (x, ε) = 0 becomesG(X, ε) = 0 whileG(X,0) = O(1).

(iii) The final stage is to make an assumption about an asymptotic expansion of the solutionX for
smallε

X(ε) = X0+ µ1(ε)X1+ µ2(ε)X2+ . . .
This is only an assumption, based on a successful and consistent construction later. If we en-
counter a contradiction, we have to go back and correct or alter the assumed expansion.

If both X(ε) andG(X, ε) have an asymptotic series expansion with the same gauge functions,
X(ε) may be determined asymptotically by the following perturbation method. We expandX,
substitute this expansion inG, and expandG to obtain

G(X, ε) = G0(X0)+ µ1(ε)G1(X1, X0)+ µ2(ε)G2(X2, X1, X0)+ . . . = 0.

From the Fundamental Theorem of asymptotic expansions (3.3.8) it follows that each termGn

vanishes, and the sequence of coefficients(Xn) can be determined by induction:

G0(X0) = 0, G1(X1, X0) = 0, G2(X2, X1, X0) = 0, etc. (3.2)
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It should be noted that finding the sequence of gauge functions (µn) is of particular importance.
This is in general done iteratively, but sometimes a good guess also works. For example, ifG is
a smooth function ofε, in particular inε = 0, then in most cases an asymptotic power series
will work, i.e.µn(ε) = εn.

We have to realise that a successful construction is not aproof for its correctness. Strictly math-
ematical proofs are usually very difficult, and in the context of modelling not common. Suc-
cessfully finding a consistent solution is normally the strongest indication for its correctness we
can obtain.

3.3.2 Example: roots of a polynomial

We illustrate this procedure by the following example. Consider the roots forε→ 0 of the equation

x3− εx2+ 2ε3x + 2ε6 = 0.

Since the polynomial is of 3d order, and is negative forx = −1 (andε small), positive inx = ε2,
negative inx = −1

2ε, and positive inx = 1, there are exactly 3 real solutionsx(1), x(2), x(3).

From the structure of the equation it seems reasonable to assume that the order of magnitude of the
solutions scale like a power ofε. We write

x = εnX(ε), X = Os(1)

We have to determine exponentn first. This is done by balancing terms, and then seek suchn that
produce a non-trivial limit under the limitε→ 0: thedistinguished limitsof step (ii) above.
We compare asymptotically the coefficients in the equation that remain after scaling

ε3nX3− ε1+2nX2+ 2ε3+n X + 2ε6 = 0.

Consider now the order of magnitude of the coefficients:

ε3n, ε1+2n, ε3+n, ε6.

By dividing by the biggest coefficient (this depends onn), we can always make sure that one coeffi-
cient is 1 and the others are smaller. For example, ifn = 0 we have

1, ε, ε3, ε6.

If n = 2 we have
ε, 1, 1, ε.

If n = 4 we have
ε6, ε3, ε, 1.

If none balance (like forn = 0 andn = 4), the asymptotically biggest, with coefficient 1, would
be zero on its own, which thus implies to leading order thatX = 0. However, this isnot Os(1) and
therefore not a valid scaling. So at least two should be of thesame order of magnitudeanddominate
(like with n = 2).
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Figure 3.2: Analysis of distinguished limits.

In other words: in order to have a meaningful (or “significant”) degenerate solutionX(0) = Os(1), at
least two terms of the equation should be asymptotically equivalent, and at the same time of leading
order whenε→ 0.

So this leaves us with the task to compare the exponents 3n,1+2n,3+n,6 as a function ofn. Consider
the Figure 3.2. The solid lines denote the exponents of the powers ofε, that occur in the coefficients
of the equation considered. At the intersections of these lines, denoted by the open and closed cir-
cles, we find the candidates of distinguished limits,i.e. the points where at least two coefficients are
asymptotically equivalent. Finally, only the closed circles are the distinguished limits, because these
are located along the lower envelope (thick solid line) and therefore correspond to leading order terms
whenε→ 0. We have now three cases.

n = 1.
ε3X3− ε3X2+ 2ε4X + 2ε6 = 0, or X3− X2+ 2εX + 2ε3 = 0.

From the structure of the equation it seems reasonable to assume thatX has an asymptotic
expansion in powers ofε. If we assume the expansionX = X0+ εX1+ . . ., we finally have

X3
0 − X2

0 = 0, 3X2
0 X1− 2X0X1+ 2X0 = 0, etc.

and soX0 = 1, andX1 = −2, etc.leading tox(ε) = ε− 2ε2+ . . . Note that solutionX0 = 0
is excluded because that would change the order of the scaling!

n = 2.
ε6X3− ε5X2+ 2ε5X + 2ε6 = 0, or εX3− X2+ 2X + 2ε = 0.

From the structure of the equation it seems reasonable to assume thatX has an asymptotic
expansion in powers ofε. If we assume the expansionX = X0+ εX1+ . . ., we finally have

−X2
0 + 2X0 = 0, X3

0 − 2X0X1+ 2X1+ 2= 0, etc.

and soX0 = 2, X1 = 5, etc., leading tox(ε) = 2ε2 + 5ε3+ . . .
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n = 3.
ε9X3− ε7X2+ 2ε6X + 2ε6 = 0, or ε3X3− εX2+ 2X + 2= 0.

From the structure of the equation it seems reasonable to assume thatX has an asymptotic
expansion in powers ofε. If we assume the expansionX = X0+ εX1+ . . ., we finally have

2X0 + 2= 0, −X3
0 + 2X1 = 0, etc.

and soX0 = −1, X1 = −1
2, etc., leading tox(ε) = −ε3− 1

2ε
4+ . . . �

It is not always so easy to guess the general form of the gauge functions. Then all terms have to be
estimated iteratively by a similar process of balancing as for the leading order term. See the exercises.
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3.4 Asymptotic Expansions: Assignments

3.4.1 Asymptotic order

3.4.1.1

Prove, for functions inε ↓ 0, that

(a) If f = O(φ) andg = o(ψ), then f g = o(φψ).

(b) If f = O(φ) andg = o(φ), then f + g = O(φ).

(c) If f = O(φ) andφ = o(ψ), then f = o(ψ).

(d) If f = o(φ) andφ = O(ψ), then f = o(ψ).

(e) If f = O(φ) andφ = O( f ), then f = Os(φ).

3.4.2 Asymptotic expansions inε

3.4.2.1

What values ofα, if any, yield (i) f = O(εα), (ii) f = o(εα), (iii) f = Os(ε
α) asε→0?

(a) f =
√

1+ ε2

(b) f = ε sin(ε)

(c) f = (1− eε)−1

(d) f = ln(1+ ε)

(e) f = ε ln(ε)

(f) f = sin(1/ε)

(g) f = √x + ε, where 06 x 6 1

(h) f = e−x/ε, wherex > 0

3.4.2.2

Determine asymptotic expansions forε→ 0 with respect to{εn(ln ε)k} of

(a) ε/ tanε,

(b) ε/(1− εε),

(c) 1/ ln(sinε),

(d) (1− ε + ε2 ln ε)/(1− ε ln ε − ε + ε2 ln ε).
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3.4.2.3

Assuming f ∼ aεα +bεβ + . . . , findα, β (with α < β) and nonzeroa,b for the following functions:

(a) f = 1/(1− eε)

(b) f = sinh(
√

1+ εx) for 0< x <∞.

(c) f =
∫ ε

0 sin(x + εx2)dx

3.4.3 Asymptotic sequences

3.4.3.1

Are the following sequencesasymptotic sequencesfor ε→0. If not, arrange them so that they are or
explain why it is not possible to do so.

(a) φn = (1− e−ε)n for n = 0,1,2,3, . . .

(b) φn = [2 sinh(ε/2)]n/2 for n = 0,1,2,3, . . .

(c) φn = 1/ε1/n for n = 1,2,3, . . .

(d) φ1 = 1, φ2 = ε, φ3 = ε2, φ4 = ε ln(ε), φ5 = ε2 ln(ε), φ6 = ε ln2(ε), φ7 = ε2 ln2(ε).

(e) φn = εnε for n = 0,1,2,3, . . .

(f) φn = εn/ε for n = 0,1,2,3, . . .

3.4.4 Asymptotic expansions inx and ε

3.4.4.1

Find a one-term asymptotic approximation, forε→0, of the form f (x, ε) ∼ φ(x) that holds for
−1 < x < 1. Sketch f (x, ε) andφ, and then explain why the approximation is not uniform for
−1< x < 1.

(a) f (x, ε) = x + exp
(
(x2 − 1)/ε

)

(b) f (x, ε) = x + tanh(x/ε)

(c) f (x, ε) = x + 1/ cosh(x/ε)
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3.4.4.2

Determine, if possible, uniform asymptotic expansions forε→ 0 and x ∈ [0,1] of

(a) sin(εx),

(b) 1/(ε + x),

(c) x log(εx),

(d) e− sin(x)ε,

(e) e− sin(x)/ε .

(f) 2 log(1+ x)/(x2 + ε2).

3.4.5 Solving algebraic equations asymptotically

3.4.5.1

Find a two-term asymptotic expansion, forε→0, of each solutionx of the following equations.

(a) εx3 − 3x + 1= 0,

(b) εx3 − x + 2= 0,

(c) x2+ε = 1/(x + 2ε), (x > 0).

(d) x2 − 1+ ε tanh(x/ε) = 0

(e) x = a+ εxk for x > 0. Consider 0< k < 1 andk > 1.

(f) 1− 2x + x2 − εx3 = 0.

3.4.5.2

Derive step by step, by iteratively scalingx(ε) = µ0(ε)x0+ µ1(ε)x1+ µ2(ε)x2+ . . . and balancing,
that a third order asymptotic solution (forε→ 0) of the equation

ln(εx)+ x = a,

is given by
x(ε) = ln ε−1− ln

(
ln ε−1

)
+ a+ o(1).

Find a more efficient expansion based on an alternative asymptotic sequence of gauge functions by
combininge−a ε.

3.4.5.3

Analyse asymptotically forε→ 0 the zeros ofe−x/ε2+x − ε.

49 07-03-2018



FUNDAMENTALS AND APPLICATIONS OFPERTURBATION METHODS IN FLUID DYNAMICS

3.4.5.4

Solve asymptotically, for largen, then-th positive solutionx = xn of

x = tanx.

Hint: for large n and xn > 0, xn = tan(xn) is large, and so xn must be near (in fact: just before) a
pole oftan. If we count the trivial first solution as x0 = 0, then xn ≃ (n+ 1

2)π . Writeε−1 = (n+ 1
2)π ,

and xn = ε−1− y(ε) with 0< y < 1
2π such thattan(x) = cot(y). Solve asymptotically for smallε.

Generalise this result to the solutions of
x = α tanx

for α > 0. Note that solutionx1 seems lost forα > 1. Do you see where it disappeared to?

3.4.5.5 The pivoted barrier

Consider a horizontal barrier of lengthL, free on one end and pivoted at the other end, such that it can
swivel horizontally around a vertical pivot. The hinge is constructed in such a way that the barrier is
fixed perpendicularly to the upper end of a vertical hollow cylinder of diameterB and lengthH . This
upper end is closed, the other end is open. With this open end the cylinder is placed over a vertical
axis which is firmly anchored in the ground. Of course, the length of the axis is more thanH and the
diameter of the axis,b, is less thanB.

L
H

B

b

α

Figure 3.3: Slightly tilted barrier

Depending on the clearance between cylinder and axis, and the length of the cylinder, the free end
of the barrier (which is otherwise perfectly stiff) will lean down from the exactly horizontal position.
The question is: how much will this be.

You may assume that the construction is reasonable. In otherwords, the clearance will be small but
not very small, and the length of the cylinder is ample.

Try to solve the problem geometrically exactly. It is possible to reformulate the problem as one of
finding a zero of a 4-th order polynomial equation in sinα, whereα is the angle of barrier with
horizon. Conclude that the solution is difficult and clumsy.

Then try to make reasonable approximations and construct anadequate and transparent approximate
solution.
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3.4.5.6

Find an asymptotic approximation, forε→0, of each solutiony = y(x, ε) of

y2+ (1+ ε + x)y+ x = 0, for 0< x < 1,

and determine if it is uniform inx over the indicated interval.

3.4.5.7 The Lagrange points of the reduced three body problem

Consider the so-calledRestricted Three Body Problemconsisting of a very small object moving in the
gravity field of a system of two bodies, moving in a circle around their center of gravity. This gravity
field (in a co-rotating coordinate system) has 5 points, where the sum of gravities and centrifugal
forces cancel each other. Here, the small object could remain stationary (motionless in the co-rotating
coordinates). These points are called theLagrange pointsor libration points. Two of them can be
given analytically exactly. If the mass ratio of both bodiesis small, the location of the other three
Lagrange points can be given asymptotically.

Consider the three massesM1 (big), M2 (small) andM3 (negligible). The two massesM1 andM2 are
assumed to be in circular orbits around their center of mass.The third massM3 is so small that it does
not influence the motion ofM1 and M2. We make dimensionless such thatM1 = 1 (the Sun, say)
and M2 = µ (Earth or Jupiter, say).µ is small but not negligible (3.03591· 10−6 for the Earth-Sun
system).M3 = 0 (satellite, small planet) is negligibly small. Gravitational constant becomesG = 1
and the orbital period is 2π . The radii of the orbits around the center of gravity ofM1 isµ, and ofM2

is 1− µ.

Introduce a coordinate system with the origin in the center of gravity, and co-rotates withM1 andM2.
In this system,M1 has fixed coordinates(−µ,0) andM2 has(1− µ,0). The equations of motion of
M3 in (x, y, z) are now

..
x − 2

.
y= ∂�

∂x
,

..
y + 2

.
x= ∂�

∂y

..
z= ∂�

∂z

where

� = 1
2(x

2+ y2)+ 1− µ
R1
+ µ

R2
+ 1

2µ(1− µ),

R1 =
√
(x + µ)2+ y2+ z2,

R2 =
√
(x − 1+ µ)2 + y2+ z2.

and so

∂�

∂x
= x − (1− µ)x + µ

R3
1

− µx − 1+ µ
R3

2

,

∂�

∂y
= y− (1− µ) y

R3
1

− µ y

R3
2

,

∂�

∂z
= −(1− µ) z

R3
1

− µ z

R3
2

.
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×××

×

×

L1 L2L3

L4

L5

M1 M2

M3

Figure 3.4: Sketch of restricted three-body problem with 5 Lagrange points and origin.

The 5 stationary points of this system are called “Lagrange points” or “libration points”. They are
given by the system∇� = 0, or

x

(
1− 1− µ

R3
1

− µ

R3
2

)
− (1− µ)µ

(
1

R3
1

− 1

R3
2

)
= 0,

y

(
1− 1− µ

R3
1

− µ

R3
2

)
= 0,

z

(
− 1− µ

R3
1

− µ

R3
2

)
= 0.

All solutions are found in the planez = 0, since(1− µ)R−3
1 + µR−3

2 > 0. Lagrange pointsL1, L2,
and L3 are located on the liney = 0 (see below), but these are not the only solutions. The second
factor of they-equation may also vanish, in which case thex-equation simplifies to the condition
R1 = R2 = 1. This then gives rise to the pointsL4 andL5, which are explicitly given by

x4,5 = 1
2 − µ, y4,5 = ±1

2

√
3.

The other three points,L1, L2 andL3, are located on the liney = 0, i.e. given byy1 = y2 = y3 = 0
(the colinear libration points). The resultingx-equation can not be simplified further, but may be
solved asymptotically for smallµ. We have

x − (1− µ) x + µ
|x + µ|3 − µ

x − 1+ µ
|x − 1+ µ|3 = 0.

Verify that the three coordinatesx3, x4, andx5 are given asymptotically by

x1 = 1− (1
3µ)

1/3+ 1
3(

1
3µ)

2/3+ O(µ)

x2 = 1+ (1
3µ)

1/3+ 1
3(

1
3µ)

2/3+ O(µ)

x3 = −1− 5
12µ+ 1127

20736µ
3 + O(µ4)
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3.4.6 Solving differential equations asymptotically

3.4.6.1

Find a two-term asymptotic expansion, forε→0, of the solutiony = y(x, ε) of the following prob-
lems.

(a) y′′ + εy′ − y = 1, wherey(0) = y(1) = 1.

(b) y′′ + y+ y3 = 0, wherey(0) = 0 andy(1
2π) = ε.

3.4.6.2 A car changing lanes

A car rides along a double lane straight road given by−∞ < x < ∞, −2b 6 y 6 2b. The position
of the car at timet is given by

x = ξ(t), y = η(t).

y

x

0 b−b

Figure 3.5: The trajectory of a car that changes lane

For x→−∞, the car is aty = −b, but nearx = 0 it changes lane and shifts smoothly toy = b
according to a trajectory given by

η(t) = F(ξ(t)),

whereF is given andξ = ξ(t) is to be found under the condition that all along the trajectory, the car
travels with the same speedV , so

.
ξ(t)2+ .

η(t)2 = V2, and so
.
ξ(t)2+ F ′(ξ)2

.
ξ(t)2 = V2.

Note that bothF and its argumentx have dimension “length”, so ifF describes a changes of the order
of b over a distance of the order ofL, we should be able to writeF as

F(x) = b f (x/L)
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for f = O(1). Take for definitenessξ(0) = 0, and

f (z) = tanh(z) where f ′(z) = 1− f (z)2.

We assume that the change of lane happens gradually, such that

ε = b

L
≪ 1.

a. Make the problem dimensionless by the inherent length scale b and corresponding time scaleb/V .
Write ξ = bX. Note the appearance of the small parameterε. Do you see the appearance of a term
of the form f ′(εX)? If we expand this for smallε we obtain something like

f ′(εX) = f ′(0)+ εX f ′′(0)+ . . .
which is already incorrect forX = O(1/ε), the order of magnitude we are interested in! Therefore
this choice is NOT clever. Indeed,b is not the typical length scale forξ .

b. Make the problem dimensionless by the inherent length scale L and corresponding time scale
L/V . Write ξ = L X andt = (L/V)τ .

c. By separation of variables we can writeτ as a function, in the form of an integral, ofX. Otherwise,
it is impossible to find an explicit expression forX. Therefore, we will try to find an asymptotic
expansion for smallε by assuming the Poincaré expansion

X(τ, ε) = X0(τ )+ ε2X1(τ )+ O(ε2),

and substitute this in the equation, and expand the equationalso asymptotically. Find the first two
terms. Do you see why we can expand in powers ofε2 rather than (for example)ε?

Hint: note that for smallδ we approximate(1+ δ)a = 1+ aδ + O(δ2), and
∫

tanh(x)2n dx = x − tanh(x)− 1
3 tanh(x)3 − 1

5 tanh(x)5 − · · · − 1
2n−1 tanh(x)2n−1

such that ∫
(1− tanh(x)2)1 dx = tanh(x)

∫
(1− tanh(x)2)2 dx = tanh(x)− 1

3 tanh(x)3

∫
(1− tanh(x)2)3 dx = tanh(x)− 2

3 tanh(x)3+ 1
5 tanh(x)5

3.4.7 A water-bubbles mixture

A mixture of water and air (in the form of bubbles) with volumefractionα air and volume fraction
1− α water, has a mean densityρ and sound speedc given by

ρ = αρa + (1− α)ρw,
1

ρc2
= α

ρac2
a

+ 1− α
ρwc2

w

.

Typical values areρw = 1000 kg/m3, ρa = 1.2 kg/m3, cw = 1470 m/s,ca = 340 m/s. Develop
strategies to approximatec for values ofα, based on an inherent small problem parameter. When is
c minimal? What is the effect of even a very small fraction of air (common in the wake of a ship’s
propeller, or in a fresh central heating system)?
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3.4.8 A chemical reaction-diffusion problem (regular limit)

A catalytic reaction is a chemical reaction between reactants, of which one – the catalyst – returns
after the reaction to its original state. Its rôle is entirely to enable the reaction to happen. An example
of a catalyst is platinum. The primary reactant is usually a liquid or a gas. As the catalyst and the
reactant are immiscible, the reaction occurs at the catalyst surface, which is therefore made as large
as possible. A way to achieve this is by applying the catalystin the pores of porous pellets in a so-
called fixed bed catalytic reactor. The reactant diffuses from the surface to the inside of the pellet.
Meanwhile, being in contact with the catalyst, the reactantis converted to the final product.

Assume reactantA reacts to productB at the pellet pores surface via annth-order, irreversible reaction

A
k→ B

with concentration inside the pelletC = [A] mol/m3, production ratekCn mol/m3s and rate constant
k. This reaction acts as a sink term forA. Under the additional assumption of a well stirred fluid in
order to maintain a constant concentrationC = CR at the outer surface of spherically shaped pellets,
we obtain the following unsteady reaction-diffusion equation:

∂C

∂t
−∇·(D∇C) = −kCn, 0< r̃ < R, t > 0,

C(r,0) = 0, 0< r̃ < R,

C(R, t) = CR,
∂

∂ r̃
C(0, t) = 0, t > 0,

C = CRr̃

R

whereD is the diffusion coefficient ofC inside the pellet. After sufficiently long time the concen-
tration C attains a steady state distribution within the pellet. Assuming spherical symmetry and a
constant diffusion coefficientD, we have the stationary reaction-diffusion equation

D
1

r̃ 2

d

dr̃

(
r̃ 2 dC

dr̃

)
= kCn, 0< r̃ < R,

C(R) = CR,
d

dr̃
C(0) = 0.

The net mass flux into the pellet, an important final result, isgiven by 4πR2D d
dr C(R) (Fick’s law).

We make the problem dimensionless as follows:

c = C

CR
, r = r̃

R
, φ2 = k R2Cn−1

R

D
,

such that

1

r 2

d

dr

(
r 2 dc

dr

)
= φ2cn, 0< r < 1,

c(1) = 1, c′(0) = 0,

where the prime( ′) denotes differentiation with respect tor , φ is called the Thiele modulus, and
reaction ordern = 1,2,3, . . . .

We are interested in the asymptotic behaviour ofc for ε = φ2 → 0. Assume a regular Poincaré
expansion ofc in powers ofε and find the first three terms.Hint. Introducey = rc.
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Chapter 4

Method of Slow Variation

4.1 Theory

The nameMethod of Slow Variationwas coined relatively recently in 1987 by Milton Van Dyke [6].

4.1.1 General procedure

Suppose we have a functionϕ(x, ε) of spatial coordinatesx ∈ V and a small parameterε, such that
the typical variation in one direction, sayx, is of the order of length scaleε−1. For example,

ϕ(x, ε) = 1+ ε sin(εx + ε), or ϕ(x, ε) = x

ε−2+ x2

alongV = R. Roughly speaking, this amounts to something like∂
∂xϕ = O(εϕ). However, ifϕ is

zero, or much smaller or larger than the varying part ofϕ, this is not what we mean. Rather than
formulating a mathematically precise but cumbersome definition, we will express this behaviour most
conveniently by writing

ϕ(x, y, z, ε) = 8(εx, y, z, ε)

under the assumption that
8(X, y, z, ε) = O(µ0(ε))

uniformly in its domain of definition. Now if we were to expand8(εx, y, z, ε) for smallε, we might,
for example by some Taylor-like expansion inε, get something like (assumeµ0 = 1)

8(εx, y, z, ε) = 8(0, y, z;0)+ ε
(
x8x(0, y, z;0)+8ε(0, y, z;0)

)
+ . . .

which is only uniform inx on an interval[0, L] if L = O(1), while the inherent slow variation on the
longer scale ofx = O(ε−1) would be masked. It is clearly much better to absorb theε-dependence in
εx into a new variable, and introduce the scaled variableX = εx. The (assumed) regular expansion
of 8(X, y, z, ε)

8(X, y, z, ε) = µ0(ε)ϕ0(X, y, z)+ . . . (4.1)

now retains the slow variation inX in the shape functions of the expansion and remains valid forall X.
In other words, the scaled variableX in combination with order functionµ0 yields with limε→0µ

−1
0 8

thedistinguished limitor significant degenerationof ϕ.
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This situation frequently happens when the geometry involved is slender. The theory of one dimen-
sional gas dynamics, lubrication flow, or sound propagationin horns (Webster’s horn equation) are
important examples, although they are usually derived not systematically, without explicit reference
to the slender geometry. We will illustrate the method both for heat flow in a varying bar, quasi 1-D gas
flow and the shallow water problem. A more advanced example, presented for illustration in section
2.1.5, is the weakly nonlinear theory for long water waves, resulting in the celebrated Korteweg-de×
Vries equation.

4.1.2 Example: heat flow in a bar

Consider the stationary problem of the temperature distribution T in a long heat-conducting bar, with
constant heat conductivityκ, outward surface normaln, and slowly varying cross sectionA. The bar is
kept at a temperature difference such that a given heat flux ismaintained, but is otherwise isolated. As
there is no leakage of heat, the axial fluxF along a cross section is constant. With spatial coordinates
made dimensionless on a typical bar cross sectionD and the temperature on a typical temperature20,
we can write the flux in a dimensionless form likeF = κ20DQ, and have the following equations
and boundary conditions

∇2T = 0,
[
∇T ·n]surface= 0,

∫∫

A

(
−∂T

∂x

)
dS= Q.

(Note that only the derivatives ofT play a role, so we may subtract any reference level and assume, for
example, thatT is at one of the ends equal to zero.) After integrating∇2T over a slicex1 6 x 6 x2,
and applying Gauss’s theorem, we find that the axial fluxQ is indeed independent ofx.

We will assume here the cross section and the temperature field circular symmetric, but that is not
a necessary simplification for a manageable analysis. As a result we have in cylindrical coordinates
(x, r, θ)

∂2T

∂x2
+ 1

r

∂

∂r

(
r
∂T

∂r

)
= 0,

∂T

∂x
nx +

∂T

∂r
nr = 0, 2π

∫ R

0
r
∂T

∂x
dr = −Q.

The typical length scaleL of diameter variation is assumed to be much larger than a diameterD. We
introduce their ratio as the small parameterε = D/L, and write for the bar surface

S(X, r ) = r − R(X) = 0, X = εx,

where(x, r, θ) form a cylindrical coordinate system (see Figure 4.1). By writing R as a continuous
function of slow variableX, rather thanx, we have made our formal assumption of slow variation
explicit in a convenient and simple way, sinceRx = εRX = O(ε). From calculus we know, that∇S
is a normal of the surfaceS= 0. So we can write

n ∼ ∇S, or nxex + nr er ∼ −εRXex + er .

The crucial step will now be the assumption that the temperature isonly affected by the geometric
variation induced byR. Any initial or entrance effects are ignored or have disappeared. As a result, in
the limit of smallε,

the temperature fieldT(x, r, ε) = T̃(X, r, ε) has a regular expansion1 in variableX,

1i.e.on the whole bar
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x

n

θ

r

r = R(εx)

Figure 4.1: Slowly varying bar.

rather thanx – in other words:T̃ yields the distinguished limit ofT – and

its axial gradient scales onε, as
∂T

∂x
= ε ∂ T̃

∂X
= O(ε).

For simplicity we will write in the followingT , instead ofT̃ . If we rewrite the equations fromx into
X, we obtain the rescaled heat equation

ε2TX X +
1

r

(
rTr

)
r
= 0. (∗)

At the wall r = R(X) the boundary condition of vanishing heat flux is

− ε2TX RX + Tr = 0. (†)

The flux condition, for lucidity rewritten withQ = 2πεq, is given by

∫ R(X)

0
r
∂T

∂X
dr = −q.

This problem is too difficult in general, so we try to utilize the small parameterε in a systematic
manner. From the flux condition, it seems thatT = O(1). Since the perturbation terms areO(ε2), we
assume the asymptotic expansion of Poincaré-type, with shape functions of(X, r ), not of (x, r )

T(X, r, ε) = T0(X, r )+ ε2T1(X, r )+ O(ε4).

(Note: this is essentially a modelling assumption and not necessarily possible for any problems.) After
substitution in equation (∗) and boundary condition (†), further expansion in powers ofε2 and equating
like powers ofε, we obtain to leading order the following equation inr

(rT0,r )r = 0 with T0,r = 0 at r = R(X) and regular atr = 0.

An obvious solution isT0(X, r ) is constant. SinceX is present as parameter we have thus

T0 = T0(X).

We can substitute this directly in the flux condition, to find

1

2
R2(X)

dT0

dX
= −q
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and therefore

T0(X) = Tin −
∫ X

0

q
1
2 R2(ξ)

dξ.

We can go on to find the next termT1, but this leading order solution contains already most of the
physical information.

In summary: we assumed that the slowly varying bar induces a slowly varying temperature distri-
bution. This is not always true, but depends on the type of physical phenomenon. Then we rescaled
the equations such that we used this slow variation. After assuming an asymptotic expansion of the
solution we obtained a simplified sequence of problems. The original partial differential equations
simplified to ordinary differential equations, which are far easier to solve.

It should be noted that we did not include in our analysis any boundary conditions at the ends of the
bar. It is true that the present method fails here. The found solution is uniformly valid onR (since
R(X) is assumed continuous and independent ofε), but only as long as we stay away from any end.
Near the ends the boundary conditions inducex-gradients ofO(1) which makes the prevailing length
scale againx, rather thanX. This region is asymptotically of boundary layer type, and should be
treated differently (see below).
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4.2 Method of Slow Variation: Assignments

4.2.1 Heat flux in a bar

Consider the stationary two-dimensional problem of a long heat-conducting bar, slowly varying in
diameter, which is kept at both ends at a different temperature, and which is otherwise thermally
isolated. We will not consider the neighbourhood of the ends, and therefore we will not explicitly
apply boundary conditions at the ends. Instead, we will assume a given axial heat flux.

In dimensionalform, we have

∂2T

∂x2
+ ∂

2T

∂y2
= 0 along 0< x < ℓ, 0 6 y 6 Hh

(
x
L

)

with ε = H/L is small,ℓ is large enough,h = O(1) is a smooth, strictly positive function, and a flux

−
∫ Hh

0
κ
∂T

∂x
dy = Q

is prescribed. Make the problem dimensionless onH and a suitable temperature. Write the boundary
condition of thermal isolation (flux∼ ∇T · En = 0) in terms ofh.

Apparently, the essential co-ordinate inx-direction isx/L, and significant changes inx-direction are
felt only on a length scalex = O(L−1), so we introduce a slow axial variable.

Assume that the field varies axially in this variable (ℓ is large enough so any end-effects are local and
assumed irrelevant here).

Solve the problem to leading order of an assumed asymptotic expansion ofT in powers ofε.

4.2.2 Lubrication flow

Lubrication theory deals with a viscous flow (not-large Reynolds number) through a narrow channel
of slowly varying cross section.

Consider steady flow in a two-dimensional narrow channel, with prescribed volume flux. In practice
this flux is created by a prescribed pressure difference or pressure gradient, but by using the flux here,
we can estimate the typical flow velocity and thus the Reynolds number.

If we make dimensionless on the channel height, and scale thepressure gradient such that viscous
forces are balanced by the (externally applied) pressure gradient, we obtain in dimensionless form
(check!)

Re
(
u
∂u

∂x
+ v ∂u

∂y

)
+ ∂p

∂x
= ∂2u

∂x2
+ ∂

2u

∂y2
, Re

(
u
∂v

∂x
+ v ∂v

∂y

)
+ ∂p

∂y
= ∂2v

∂x2
+ ∂

2v

∂y2
,

∂u

∂x
+ ∂v
∂y
= 0

for the velocity(u, v) and pressurep in the channel

−∞ < x <∞, g(εx) 6 y 6 h(εx).

(End conditions inx are not important.) Boundary conditions are no slip at the walls:

u = v = 0 at y = g(εx), andy = h(εx)
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such that 0< h− g = Os(1). Furthermore, the flow is assumed to consitute the flux

∫ h(εx)

g(εx)
u(x, y)dy = 1.

(If required, we can fix the pressure somewhere, for examplep(x = 0) = 0, but this is not important.)

Apparently, the essential co-ordinate inx-direction isεx, and significant changes inx-direction are
felt only on a length scalex = O(ε−1), so we rewriteX = εx.

Assume that the field varies slowly inX (any end-effects are local and irrelevant for thex’s consid-
ered).

How do we scaleu, v, p? Do not forget the fact thatRe 6 O(1), and that a pressure gradient is
necessary to have a flow, while further the crosswise velocity v will be much smaller than the axial
velocity u.

Assume for scaledu, v, p an obvious asymptotic expansion inε, and solve up to leading order.

4.2.3 Quasi 1D gas dynamics

Consider a compressible, subsonic inviscid irrotational steady flow through a slowly varying cylin-
drical duct, given dimensionless byr = R(εx). The flow is assumed nearly uniform. Because of
symmetry, it is assumed to be independent of the circumferential co-ordinateθ . As the flow is irro-
tational, we can assume a potentialφ for the velocityv. Densityρ and pressurep are related via
thermodynamic relations of isentropy.

This type of flow is called: 1D gas dynamics. A better name would be: quasi-1D gas dynamics.

In dimensionless form, the flow is described by the followingequations. Inside the duct 06 r 6

R(εx) = O(1) we have the mass equation, Bernoulli’s equation and the isentropic relation

∇ ·(ρv) = ∂

∂x
(ρu)+ 1

r

∂

∂r
(rρv) = 0, where v = ∇φ =

(
∂
∂xφ

)
ex +

(
∂
∂r φ

)
er = uex + ver

1
2|v|2+

c2

γ − 1
= E, a constantO(1)

c2 = γ p

ρ
= ργ−1 = O(1)

The duct walls, with normal vectorn, are impermeable, so

v·n = ∇φ·n = 0 at r = R(εx),

while a mass fluxF is given by

2π
∫ R(εx)

0
ρ(x, r )u(x, r )r dr = F = O(1).

The thermodynamical properties are fixed by the Bernoulli constantE. The physical parameterγ ,
which is just a constant, is typically for air equal to 1.4. The auxiliary variablec denotes the sound
speed, and is otherwise unimportant.
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Apparently, the essential co-ordinate inx-direction isεx, and significant changes inx-direction are
felt only on a length scalex = O(ε−1), so we rewriteX = εx.

How do we scaleφ,u, v, ρ, p, c? Pay particularly attention to the fact that from the flux condition it
follows thatu = O(1), while alsou = ∂

∂xφ. Do not forget the fact that a pressure gradient is necessary
to have a flow, while further the crosswise velocityv will be much smaller than the axial velocityu.

Assume that the field varies slowly inX (any end-effects are local and irrelevant for thex’s consid-
ered).

Assume for scaledφ,u, v, ρ, p, c an obvious asymptotic expansion inε, and determine the prevailing
equations to leading order. Solve the equations for the velocity. For densityρ we are left with an
algebraic equation that cannot be solved explicitly.

4.2.4 Webster’s horn

Consider acoustic waves of fixed frequencyω through a slowly varying horn (duct). The typical wave
lengthλ is long, i.e.of the same order of magnitude as the typical length scaleL of the duct diameter
variations. For simplicity we consider a two-dimensional horn, with a constant lower wall given by
ỹ = 0 and an upper wall given bỹy = Hh(x̃/L), whereh = O(1) is dimensionless andH ≪ L.

The sound field is given by the velocity potentialφ̃, where velocity isṽ = ∇̃φ̃ (and pressurẽp =
−iωρ0φ̃ but this is here unimportant), obeying the reduced wave equation ( Helmholtz equation)

∇̃2φ̃ + k̃2φ̃ = 0, in −∞ < x̃ <∞, 0 6 ỹ 6 Hh(x̃/L),

wherek̃ = ω/c is the free field wave number, which is equal to 2π/λ.

The wall (with normal vectorsey andn) are impermeable, so we have the boundary conditions

ṽ· ey = 0 at ỹ = 0, ṽ·n = 0 at ỹ = Hh(x̃/L).

Assume that there is a sound field (the problem is linear, so it’s enough to assume thatφ̃ 6≡ 0).

Make the lengths in the problem dimensionless on the typicalduct heightH andφ̃ on an (unimportant)
reference value8. Verify that the equations remain the same. Introduce the small parameterε = H/L.

Apparently, thex̃ variations scale onL, and so the essential co-ordinate inx-direction isεx. Signifi-
cant changes inx-direction are felt only on a length scalex = O(ε−1), and so we rewriteX = εx.

Note that the dimensionlessk = O(ε), so we scalek = εκ.

Assume that the field varies slowly inX (any end-effects are local and irrelevant here).

Assume in scaled coordinates forφ an obvious asymptotic expansion inε, and derive the equation for
(leading order)φ0. This equation is called “Webster’s equation”.

Solve this equation forh(z) = e2αz.
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4.2.5 Shallow water waves along a varying bottom

Consider the following inviscid incompressible irrotational 2D steady water flow in(x, z)-domain
along a slowly varying bottom. The bottom is given byz= b(x/L), whereL is a typical length scale
along which bottom variations occur. The water level is given by z= h(x).

The velocity vectorv can be given by a potentialφ

v = ∇φ.
Conservation of mass requires

∇2φ = 0 for −∞ < x <∞, b < z< h.

Because of the assumptions we can integrate the momentum equation to Bernoulli’s equation and
obtain for pressurep

1
2|∇φ|2+

p

ρ0
+ gz= C,

whereρ0 denotes the water density,g the acceleration of gravity, andC is a constant, related to the
chosen reference pressure level.

At the impermeable bottom we have a vanishing normal component of the velocity, yielding the
boundary condition

∇φ·∇(b− z) = ∂φ

∂x

∂b

∂x
− ∂φ
∂z
= 0 at z= b.

Since the water surfacez = h is a streamline, it follows that for a particle moving along(x(t), z(t))
with z(t) = h(x(t)) we havedz

dt = dh
dt = ∂h

∂x
dx
dt , leading to

∂φ

∂z
= ∂h

∂x

∂φ

∂x
at z= h.

Furthermore, the water surface takes the pressure of the airabove the water, sayp = pa, so

1
2|∇φ|2+ gh+ pa

ρ0
= C at z= h.

The water flow is defined by a prescribed volume fluxF , which is the same for all positionsx.
∫ h

b

∂φ

∂x
dz= F.

By assuming far upstream a constant bottom levelb = b∞, a constant water levelh = h∞ = b∞+D∞
and a uniform flow with velocityU∞ = F/D∞, we can determine the Bernoulli constant in physical
terms

C = pa

ρ0
+ 1

2U2
∞ + gh∞.

Introduceε = D∞/L whereε is small.

a) Make the problem dimensionless. Scale lengths onD∞, velocities onU∞. Assume that the inverse-
squared Froude number (or Richardson number)γ = gD∞/U2

∞ = O(1).

b) Solve the problem to leading order for smallε by application of the Method of Slow Variation.
Note that bothφ and h are unknowns, and have to be expanded inε. Bottom variationb and
constantsF andC − pa/ρ0, on the other hand, are given.

Note.The very last equation cannot be integrated explicitly.
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4.2.6 A laterally heated bar

A 2-dimensional slowly varying heat conducting bar is described by

−∞ < x̃ <∞, ỹ0+ Hg(x̃/L) 6 ỹ 6 ỹ0+ Hh(x̃/L),

where the geometriesg and h are smooth functions of their argument. The bar is kept alongthe
lower side at fixed temperaturẽT(x̃, ỹ0 + Hg) = θ0, and along the upper side at fixed temperature
T̃(x̃, ỹ0 + Hh) = θ1. This constitutes a stationary temperature distributionT̃(x̃, ỹ), which satisfies
the heat equation

∂2T̃

∂ x̃2
+ ∂

2T̃

∂ ỹ2
= 0.

a) Make the problem dimensionless. Scale lengths onH by x̃ = Hx and ỹ = ỹ0+ Hy, and temper-
ature byT̃ = θ0+ (θ1− θ0)T . Introduce the geometric ratioε = H/L. Assume thatε is small. As
the notation suggests,g(z) andh(z) do not depend onε and 0< h(z)− g(z) = O(1).

b) Assuming thatT is slowly varying with geometryg andh in x (no end effects), solve the problem
asymptotically for smallε to first and second order by application of the Method of Slow Variation.
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Chapter 5

Method of Lindstedt-Poincaré

5.1 Theory

5.1.1 Secular behaviour with naive expansion

When we have a functiony, depending on a small parameterε, and periodic int with fundamental
frequencyω(ε), we can writey as a Fourier series

y(t, ε) =
∞∑

n=−∞
An(ε)einω(ε)t (5.1)

If amplitudes and frequency have an asymptotic expansion for smallε, say

An(ε) = An,0 + εAn,1 + . . . , ω(ε) = ω0+ εω1+ . . . , (5.2)

we have a natural asymptotic series expansion fory of the form

y(t, ε) =
∞∑

n=−∞
An,0 einω0t + ε

∞∑

n=−∞

(
An,1 + inω1t An,0

)
einω0t + . . . (5.3)

This expansion, however, is only uniform int on an interval[0, T ], whereT = o(ε−1). On a larger
interval, for example[0, ε−1], the asymptotic hierarchy in the expansion becomes invalid, because
εt = O(1). This happens because of the occurrence of algebraically growing oscillatory terms, called
“secular terms”.Secular= occurring once in a century, andsaeculum= generation, referring to their
astronomical origin.

Definition. The terms proportional totm sin(nω0t), tm cos(nω0t) are called “secular terms”. More
generally, the name refers to any algebraically growing terms that limit the region of validity of an
asymptotic expansion.
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5.1.2 General Procedure

So with a naive expansion of a periodic function we may expectsecular behaviour that spoils regular
behaviour for large values oft . Of course, we can accept our loss and limit the region of validity, but
it is far better to apply first a coordinate transformationτ = ω(ε)t , introduceY(τ, ε) = y(t, ε), and
expandY, rather thany, asymptotically. We get

Y(τ, ε) =
∞∑

n=−∞
An(ε)einτ =

∞∑

n=−∞
An,0 einτ + ε

∞∑

n=−∞
An,1 einτ + . . . (5.4)

which is now, in variableτ , auniformly validapproximation!

The method is called theLindstedt-Poincaré methodor themethod of strained coordinates. In practical
situations, the functiony(t, ε) is implicitly given, often by a differential equation, and to be found. A
typical, but certainly not the only example [40] is a weakly nonlinear harmonic equation of the form

y′′ + εh(y, y′)+ α2y = 0,

whereh is assumed to allow the existence of one or more periodic solutions for y = O(1) with
frequencyω(ε) ≈ α for ε → 0. In view of the above, it makes sense to construct an asymptotic
approximation likeY = Y0+ εY1+ ε2Y2+ · · · with a rescaled variableτ = ωt . However, except for
trivial situations, the frequencyω is unknown, and has to be found too. Therefore, when constructing
the solution we have to allow for an unknown coordinate transformation. In order to construct the
unknownω(ε) we expand this in a similar way, for example like

τ = (ω0+ εω1+ ε2ω2+ . . .)t (5.5)

but details depend on the problem. Note that the only purposeof the scaling is to render the asymptotic
expansion ofY regular, so it is no restriction to assume forω0 something convenient, likeω0 = α.
The other coefficientsω1, ω2, . . . are determined from the additional condition that the asymptotic
hierarchy should be respected as long as possible. In other words, secular terms should not occur. We
will illustrate this with the following classic example.

5.1.3 Example: the pendulum

Consider the motion of the pendulum, described1 by the ordinary differential equation

..
θ +K 2 sin(θ) = 0, with θ(0) = ε, θ ′(0) = 0,

where 0< ε ≪ 1, K = O(1). By elementary arguments (see section 9.2) it can be shown that
periodic solutions exist. We note thatθ = O(ε) so we scaleθ = εψ to get (after dividing byε)

..
ψ +K 2(ψ − 1

6ε
2ψ3+ . . .) = 0, with ψ(0) = 1, ψ ′(0) = 0.

If we are interested in a solution only up toO(ε2) we can obviously ignore the higher order terms
indicated by the dots, to get a version of the Duffing equation.

1The equation may be simpified by rescaling time byt̃ = Kt , such that factorK 2 cancels out.
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Following the above procedure, we introduce the transformation τ = ωt to obtain

ω2ψ ′′ + K 2
(
ψ − 1

6ε
2ψ3

)
= 0,

where the prime indicates now differentiation toτ . Since the essential small parameter is apparently
ε2, we expand

ω = ω0+ ε2ω1+ . . . , ψ = ψ0+ ε2ψ1+ . . . ,
and find, after substitution, the equations for the first two orders

ω2
0ψ
′′
0 + K 2ψ0 = 0, ψ0(0) = 1, ψ ′0(0) = 0,

ω2
0ψ
′′
1 + K 2ψ1 = −2ω0ω1ψ

′′
0 + 1

6 K 2ψ3
0, ψ1(0) = 0, ψ ′1(0) = 0.

Note that we are relatively free to chooseω0, as long as it isO(1). (It is only a coordinate transfor-
mation that would automatically be compensated in the equation.) Clearly, a good choice isω0 = K
because this simplifies the formulas greatly. The solutionψ0 is then

ψ0 = cosτ, ω0 = K ,

leading to the following equation forψ1

ψ ′′ + ψ1 = 2K−1ω1 cosτ + 1
6 cos3 τ = 2K−1ω1 cosτ + 1

8 cosτ + 1
24 cos 3τ,

using section (9.4) to expand cos3 τ . At this point it is essential to observe that the right-hand-side
consists of two forcing terms: one with frequency 3 and one with 1, the resonance frequency of the
left-hand-side. This resonance would lead to secular terms, as the solutions will behave likeτ sin(τ )
andτ cos(τ ). This would spoil our approximation if we had no further degrees of freedom. However,
this is where our rescaled time comes in! We know that by scaling with thecorrectfrequencyω of the
system there will be no secular terms. So we have to chooseω1 such, that no secular terms arise.

Therefore, in order to suppress the occurrence of secular terms, the amplitude of the resonant forcing
term should vanish, which yields the next order termsω1 andψ1. We thus have

ω1 = − 1
16K

leading to
ψ1 = A1 cosτ + B1 sinτ − 1

192 cos 3τ.

With the initial conditions this is

ψ1 = 1
192

(
cosτ − cos 3τ

)
.

Altogether we have eventually

θ(t) = ε cosτ + 1
192ε

3
(
cosτ − cos 3τ

)
+ O(ε5), τ = K

(
1− 1

16ε
2+ O(ε4)

)
t.
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5.2 Method of Lindstedt-Poincaré: Assignments

5.2.1 A quadratically perturbed harmonic oscillator

Consider the following problem fory(t, ε)

y′′ + y− y2 = 0, with y(0) = ε, y′(0) = 0

asymptotically for small positive parameterε.

i) Show by phase plane considerations (section 9.1) thaty is periodic for smallε.
ii) Determine a three term straightforward expansion and discuss its uniformity for larget .
iii) Construct by means of the Lindstedt-Poincaré method (“method of strained coordinates”) a three

term approximate solution.

5.2.2 A weakly nonlinear harmonic oscillator

Consider the following problem fory(t, ε)

y′′ + (1+ y′2)y = 0, with y(0) = ε, y′(0) = 0

asymptotically for small positive parameterε.

i) Determine a two term straightforward expansion and discuss its uniformity for larget .
ii) Construct by means of the Lindstedt-Poincaré method (“method of strained coordinates”) a two

term approximate solution.

5.2.3 A weakly nonlinear, quadratically perturbed harmonic oscillator

Consider the system governed by the equation of motion

y′′ + y+ εαy2 = 0, y(0) = 0, y′(0) = β,

asymptotically forε→0, whereα = O(1). Hint: rescaley := βy andαβε := ε.

i) Show by phase plane considerations (section 9.1) thaty is periodic for smallε.

ii) Determine a three term straightforward expansion and discuss its uniformity for larget .

iii) Determine a three term expansion, valid for larget , by means of the Lindstedt-Poincaré method.

5.2.4 A coupled nonlinear oscillator

Determine a first-order uniformly valid expansion for theperiodicsolution of

u′′ + u = ε(1− z)u′

cz′ + z= u2

asymptotically forε → 0, wherec = O(1) is a positive constant andu, z = O(1). You are free to
make the solution unique in any convenient way, as long as it is periodic.
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5.2.5 A weakly nonlinear 4th order oscillator

Determine a periodic solution toO(ε) of the problem

u′′′ + u′′ + u′ + u = ε(1− u2− (u′)2− (u′′)2)(u′′ + u′)

asymptotically forε→ 0, whereu = O(1).

5.2.6 A weakly nonlinear oscillator

Use Lindstedt-Poincaré’s method to get a two-term asymptotic approximationy = y(t) to the problem

y′′ + y = εyy′2, y(0) = 1, y′(0) = 0.

5.2.7 The Van der Pol oscillator

Consider the weakly nonlinear oscillator, described by theVan der Pol equation, for variabley =
y(t, ε) in t :

y′′ + y− ε(1− y2)y′ = 0

asymptotically for small positive parameterε.

Construct by means of the Lindstedt-Poincaré method (“method of strained coordinates”) a second-
order (three term) approximation of aperiodicsolution.

Note that not all solutions are periodic (see for example thephase portrait in figure 9.2), so you have
to make sure to start on the right trajectory. Apart from this, you are free to make the solution unique
in any convenient way. Take for example initial conditions

y(0) = A(ε), y′(0) = 0

with A(ε) to be determined.

5.2.8 A variant of the Van der Pol oscillator

The same as above for
y′′ + y− ε(1− y4)y′ = 0

5.2.9 Another weakly nonlinear oscillator

For parameterβ = O(1)
y′′ + y+ ε(y′2+ βy3) = 0
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Chapter 6

Matched Asymptotic Expansions

6.1 Theory

6.1.1 Singular perturbation problems

If the solution of the problem considered does not allow a regular expansion, the problem is singu-
lar and the solution has no uniform Poincaré expansion in thesame variable. We will consider two
classes of problems. In the first one the singular behaviour is of boundary layer type and the solution
can be built up from locally regular expansions. The solution method is called “method of matched
asymptotic expansions”. In the other one more time or lengthscales occur together and a solution is
constructed by considering these length scales as if they were independent. The solution method is
called “method of multiple scales”.

6.1.2 Matched Asymptotic Expansions

Very often it happens that a simplifying limit applied to a more comprehensive model gives a correct
approximation for the main part of the domain, but not everywhere: the limit isnon-uniform. This
non-uniformity may be in space, in time, or in any other variable. For the moment we think of non-
uniformity in space, let’s say a small region nearx = 0. If this region of non-uniformity is crucial for
the problem, for example because it contains a boundary condition, or a source, the primary reduced
problem (which does not include the region of non-uniformity) is not sufficient. This, however, does
not mean that no use can be made of the inherent small parameter. The local nature of the non-
uniformity itself gives often the possibility of another reduction. In such a case we call this a couple
of limiting forms, “inner and outer problems”, and are evidence of the fact that we have apparently
physically two connected but different problems as far as the dominating mechanism is concerned.
Depending on the problem, we now have two simpler problems, serving as boundary conditions to
each other via continuity ormatchingconditions.
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6.1.2.1 Non-uniform asymptotic approximations

If a function ofx andε is “essentially” (we will see later what that means) dependent of a combination
like x/ε (or anything equivalent, like(x − x0)/ε

2), then there exists no regular (that means: uniform)
asymptotic expansion for allx = O(1) considered. A different expansion arises whenx = O(ε), in
other words after scalingt = x/ε wheret = O(1). If the limit exists, we may see something like

8(x, ε) = ϕ
(x

ε
, x, ε

)
≃ ϕ(∞, x,0)+ . . . , 8(εt, ε) = ϕ(t, εt, ε) ≃ ϕ(t,0,0) + . . . .

wherex is assumed fixed and non-zero.

Practical examples are

e−x/ε+ sin(x + ε) = 0+ sinx + ε cosx + . . . on x ∈ (0,∞)
e−t + sin(εt + ε) = e−t +ε(t + 1)+ . . . on t ∈ [0, L]

arctan
(x

ε

)
+ tan(εx) = π

2
+ ε

(
x − 1

x

)
+ . . . on x ∈ (0,∞)

arctan(t)+ tan(ε2t) = arctan(t)+ ε2t + . . . on t ∈ [0, L]
1

x2 + ε2
= 1

x2
− ε2

x4
+ . . . on x ∈ (0,∞)

1

ε2t2+ ε2
= ε−2 1

1+ t2
on t ∈ [0, L]

where L is some constant. Of course, ifx occurs only in a combination likex/ε, the asymptotic
approximation becomes trivial after transformation, but that is only here for the example.

We call this expansion theouter expansion, principally valid in the “x = O(1)”-outer region. Now
consider thestretched coordinate

t = x

ε
.

If the transformed9(t, ε) = 8(x, ε) has a non-trivial regular asymptotic expansion, then we call
this expansion theinner expansion, principally valid in the “t = O(1)”-inner region, orboundary
layer. The adjective “non-trivial” is essential: the expansion must besignificant, i.e.different from the
outer-expansion rewritten in the inner variablet . This determines the choice (in the present examples)
of the inner variablet = x/ε. The scalingδ(ε) = ε is the asymptoticallylargestgauge function with
this property.

Note the following example, where we havethree inherent length scales:x = O(1), x = O(ε),
x = O(ε2) and therefore two (nested) boundary layersx = εt andx = ε2τ ,

log(x/ε + ε) = − log(ε)+ log(x)+ . . . . . . on x ∈ (0,∞)
log(t + ε) = log(t)+ ε

t
+ . . . on t ∈ (0, L]

log(ετ + ε) = log(ε)+ log(τ + 1) on τ ∈ [0, L]

An important relation between an inner and an outer expansion is the hypothesis that theymatch:
the respective regions of validity should, asymptotically, overlap (known as theoverlap hypothesis).
Algorithmically, one may express this as follows, known as Van Dyke’s Rule.The outer limit of the
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inner expansion should be equal to the inner limit of the outer expansion.In other words, the outer-
expansion, rewritten in the inner-variable, has a regular series expansion, which isequalto the regular
asymptotic expansion of the inner-expansion, rewritten inthe outer-variable.

Suppose that we have an outer expansionµ0φ0+ µ1φ1+ . . . in outer variablex and a corresponding
inner expansionλ0ψ0+ λ1ψ1+ . . . in inner variablet , wherex = δt . Suppose we can re-expand the
outer expansion in the inner variable and the inner expansion in the outer variable such that

µ0(ε)ϕ0(δt) + µ1(ε)ϕ1(δt) + . . . = λ0(ε)η0(t) + λ1(ε)η1(t) + . . . ,

λ0(ε)ψ0(x/δ) + λ1(ε)ψ1(x/δ) + . . . = µ0(ε)θ0(x) + µ1(ε)θ1(x) + . . . ,

Then for matching the results should be equivalent to the order considered. In particular the expansion
of ηk, written back inx,

λ0(ε)η0(x/δ)+ λ1(ε)η1(x/δ)+ . . . = µ0(ε)ζ0(x)+ µ1(ε)ζ1(x)+ . . . ,

should be such thatζk = θk for k = 0,1, · · · .

A simple but typical example is the following function onx ∈ [0,∞)
f (x, ε) = sin(x + ε)+ e−x/ε cosx

with outer expansion withx = O(1)

F(x, ε) = sinx + ε cosx − 1
2ε

2 sinx − 1
6ε

3 cosx + O(ε4)

and inner expansion with boundary layer (i.e. inner) variablet = x/ε = O(1)

G(t, ε) = e−t + ε(t + 1)− 1
2ε

2t2 e−t − 1
6ε

3(t + 1)3+ O(ε4).

The outer expansion in the inner variable

F(εt, ε) = sin(εt)+ ε cos(εt)− 1
2ε

2 sin(εt)− 1
6ε

3 cos(εt)+ O(ε4)

becomes re-expanded

Fin(t, ε) = ε(t + 1)− 1
6ε

3(t + 1)3+ O(ε4)

which is, rewritten inx (and re-ordered in powers ofε), given by

Fin(x/ε, ε) = x − 1
6x3+ ε(1− 1

2x2)− 1
2ε

2x − 1
6ε

3+ O(ε4).

The inner expansion in the outer variable

G(x/ε, ε) = x + ε + (1− 1
2x2)e−x/ε−1

6(x + ε)3+ O(ε4)

becomes re-expanded

Gout(x, ε) = x − 1
6x3+ ε(1− 1

2x2)− 1
2ε

2x − 1
6ε

3+ O(ε4).

Indeed isGout(x, ε) functionally equal toFin(x/ε, ε) to the order considered.

Another way to present matching is via an intermediate scaling. Conceptually, this remains closer to
the idea of overlapping expansions than Van Dyke’s matchingrule, but in practice it is more labori-
ous. Suppose we have an outer expansionF(x, ε) in the outer variablex, and a corresponding inner
expansionG(t, ε) in the boundary layer variablet , wherex = δt andδ(ε) = o(1). Then for matching
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there should be an intermediate scalingx = ηξ , with1 δ ≪ η ≪ 1, such that under this scaling,
the re-expanded outer expansion[F(ηξ, ε)]exp is equal (to the orders considered) to the re-expanded
inner expansion[G( η

δ
ξ, ε)]exp. Note that the result must not depend on the exact choice ofη, and the

expansions should be taken of high enough order.

With the above example we have with (for exampe)η ∼ ε 1
2

F(ηξ, ε) = sin(ηξ)+ ε cos(ηξ)− 1
2ε

2 sin(ηξ)− 1
6ε

3 cos(ηξ)+ O(ε4)

= ηξ + ε − 1
6η

3ξ3− 1
2εη

2ξ2− 1
2ε

2ηξ − 1
6ε

3+ 1
120η

5ξ5+ . . .
which is indeed to leading orders equal to

G( η
ε
ξ, ε) = e−ηξ/ε+ ε( η

ε
ξ + 1)− 1

2ε
2(
η

ε
ξ)2 e−ηξ/ε − 1

6ε
3(
η

ε
ξ + 1)3 + O(ε4).

= ηξ + ε − 1
6(ηξ + ε)3+ . . . .

The idea of matching is very important because it allows one to move smoothly from one regime into
the other. The method of constructing local, but matching, expansions is therefore called “Matched
Asymptotic Expansions” (MAE). An intermediate variable istypically used in evaluating integrals
across a boundary layer (see below).

6.1.2.2 Constructing asymptotic solutions

The most important application of this concept of inner- andouter-expansions is that approximate so-
lutions of certain differential equations can be constructed for which the limit under a small parameter
is apparently non-uniform.

The main lines of argument for constructing a MAE solution toa differential equation satisfying some
boundary conditions are as follows. Suppose we have the following (example) problem.

ε
d2ϕ

dx2
+ dϕ

dx
− 2x = 0, ϕ(0) = ϕ(1) = 2. (6.1)

Assuming that the outer solution isO(1) because of the boundary conditions, we have for the equation
to leading order

dϕ0

dx
− 2x = 0,

with solution
ϕ0 = x2 + A.

The integration constantA can be determined by the boundary conditionϕ0(0) = 2 at x = 0 or
ϕ0(1) = 2 at x = 1, but not both, so we expect a boundary layer at either end. Bytrial and error
we find that no solution can be constructed if we assume a boundary layer atx = 1, so, inferring a
boundary layer atx = 0, we have to use the boundary condition atx = 1 and find

ϕ0 = x2 + 1.

1In other words,δ = o(η) andη = o(1).
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The structure of the equation indeed suggests a correction of O(ε), so we try the expansion

ϕ = ϕ0+ εϕ1+ ε2ϕ2+ · · · .
Forϕ1 this results into the equation

dϕ1

dx
+ d2ϕ0

dx2
= 0,

with ϕ1(1) = 0 (theO(ε)-term of the boundary condition), which has the solution

ϕ1 = 2− 2x.

Higher orders are straightforward:

dϕn

dx
= 0, with ϕn(1) = 0,

leading to solutionsϕn ≡ 0. We find for the outer expansion

ϕ = x2 + 1+ 2ε(1− x)+ O(εN). (6.2)

We continue with the inner expansion, and find nearx = 0, an order of magnitude of the solution
givne byϕ = λψ , and a boundary layer thickness given byx = δt (bothλ andδ are to be determined)

ελ

δ2

d2ψ

dt2
+ λ
δ

dψ

dt
− 2δt = 0.

Both from the matching (ϕouter → 1 for x ↓ 0) and from the boundary condition (ϕ(0) = 2) we
have to conclude thatϕinner = O(1) and soλ = 1. Furthermore, the boundary layer has only a
reason for existence if it comprises new effects, not described by the outer solution. From the heuristic
correspondence principlewe expect that (i) a meaningful rescaling corresponds with adistinguished
limit or significant degeneration, while (ii ) new effects are only included if we have a new equation;
in this case if(d2ψ/dt2) is included. Soεδ−2 must be at least as large asδ−1, the largest ofδ−1 andδ.
From the principle that we look for the equation with the richest structure, it must be exactly as large,
implying a boundary layer thicknessδ = ε. Thus we have the inner equation

d2ψ

dt2
+ dψ

dt
− 2ε2t = 0.

From this equation it wouldseemthat we have a series expansion without theO(ε)-term, since the
equation for this order would be the same as for the leading order. However, from matching with the
outer solution:

ϕouter→ 1+ 2ε + ε2(t2− 2t) + · · · (x = εt, t = O(1)),

we see that an additionalO(ε)-term is to be included. So we substitute the series expansion:

ϕ = ψ0+ εψ1+ ε2ψ2+ · · · (6.3)

It is a simple matter to find

d2ψ0

dt2
+ dψ0

dt
= 0, ψ0(0) = 2 → ψ0 = 2+ A0(e

−t −1),

d2ψ1

dt2
+ dψ1

dt
= 0, ψ1(0) = 0 → ψ1 = A1(e

−t −1),

d2ψ2

dt2
+ dψ2

dt
= 2t, ψ2(0) = 0 → ψ2 = t2− 2t + A2(e

−t −1),
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where the constantsA0, A1, A2, · · · are to be determined from the matching condition that inner and
outer solution should be asymptotically equivalent in the region of overlap. We follow Van Dyke’s
matching rule, and rewrite outer expansion (6.2) in inner variable t , inner expansion (6.3) in outer
variablex, re-expand and rewrite the result inx. This results into

x2+ 1+ 2ε(1− x)+ O(ε3) ≃ 1+ 2ε + x2 − 2εx + O(ε3) (6.4a)

2+ A0(e
−t −1)+ εA1(e

−t −1)+ ε2(t2− 2t + A2(e
−t −1)

)
+ O(ε3)

≃ 2− A0 − εA1 + x2 − 2εx − ε2A2 + O(ε3) (6.4b)

The resulting reduced expressions (6.4a) and (6.4b) must befunctionally equivalent. A full matching
is thus obtained if we chooseA0 = 1, A1 = −2, A2 = 0.

6.1.2.3 Composite expansion

If the boundary layer structure is simple enough, in particular if we have just a simple boundary layer
with matching inner and outer expansions, it is possible to combine the separate expansions into a
single uniform expansion, called a composite expansion.

Suppose we have an outer expansionφ = µ0φ0 + µ1φ1 + . . . in outer variablex ∈ (0,1) and a
corresponding inner expansionψ = λ0ψ0 + λ1ψ1 + . . . in inner variablet ∈ [0,∞), wherex = δt
andδ(ε) = o(1). In view of matching, the overlapping parts

φ̂(x) =
[
φ(δt)

]
t=x/δ
=
[
µ0(ε)ϕ0(δt)+ µ1(ε)ϕ1(δt)+ . . .

]
t=x/δ
=
[
λ0(ε)η0(t)+ λ1(ε)η1(t)+ . . .

]
t=x/δ

ψ̂(x) = ψ(x/δ) = λ0(ε)ψ0(x/δ)+ λ1(ε)ψ1(x/δ)+ . . . = µ0(ε)θ0(x)+ µ1(ε)θ1(x)+ . . .

are functionally equivalent to the order considered,i.e. φ̂ ≃ ψ̂(x). This means that the combined
expression

φ(x) + ψ(x/δ)

is for x = O(1) asymptotically equal toφ(x) + ψ̂(x), and forx = O(δ) asymptotically equal to
ψ(x) + φ̂(x). In both cases it is the overlapping partφ̂(x) (or equivalentlyψ̂(x)) which is too much.
The combined expansion

8(x) = φ(x)+ ψ(x/δ)− φ̂(x)

is thus valid both in the boundary layer and in the outer region.

As an example we may consider the previous problem (6.1), with solution (reformulated)

φ(x) = x2 + 1+ 2ε(1− x)+ O(ε3)

ψ(t) = 1+ e−t −2ε(e−t −1)+ ε2(t2 − 2t)+ O(ε3)

φ̂(x) = 1+ 2ε + x2− 2εx + O(ε3)

8(x) = x2 + 1+ e−x/ε+2ε − 2εx − 2ε e−x/ε+O(ε3)
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6.1.2.4 Approximate evaluation of integrals

Another application of MAE is integration. We split the integral halfway the region of overlap, and
approximate the integrand by its inner and outer approximation. Take for example

f (x, ε) = log(1+ x)

x2 + ε2
, 0 6 x <∞, 0< ε ≪ 1,

with outer expansion

f (x, ε) = log(1+ x)

x2 + ε2
= log(1+ x)

x2
− ε2 log(1+ x)

x4
+ O(ε4)

and inner expansion in boundary layerx = εt

f (εt, ε) = log(1+ εt)
ε2(t2+ 1)

= 1

ε2

(εt − 1
2ε

2t2+ O(ε3)

t2 + 1

)
= 1

ε

t

t2 + 1
−

1
2t2

t2+ 1
+ O(ε).

If we introduce a functionη = η(ε) with ε ≪ η ≪ 1 (note that eventually the detailed choice ofη is
and should be immaterial), and split up the integration interval [0,∞) = [0, η] ∪ [η,∞), we find

∫ ∞

0

log(1+ x)

x2+ ε2
dx ≃

∫ η/ε

0

t

t2+ 1
+ O(ε)dt +

∫ ∞

η

log(1+ x)

x2
+ O(ε2)dx

=
[

1
2 log(1+ t2)+ O(ε)

]η/ε

0

+
[
logx − 1+ x

x
log(1+ x)+ O(ε2/x2)

]∞

η

=
(

logη + 1
2 log(1+ ε2/η2)− logε + O(η)

)
+
(

log(1+ η)− logη + log(1+ η)
η

+ O(ε2/η2)

)

≃ − logε + 1.

6.1.2.5 Implicit matching subtleties

An interesting detail in the matching process of boundary layer problems where the inner equation is a
form of Newton’s equation (for example exercises 6.2.11, 6.2.12, 6.2.23, and others) is the following.
Consider a boundary layer equation inY(t) = Y0(t)+ . . . , 06 t <∞, of the form

∂2

∂t2 Y0+ F ′(Y0) = 0,

which may be integrated to
1
2(

∂
∂t Y0)

2+ F(Y0) = E.

If Y0 should be matched fort →∞ to an outer solutiony(x) of O(1) with x = εt , then the integration
constantE may be found by observing thatyx ∼ ε−1Yt = O(1), so the leading orderY0t should vanish
for larget . HenceE = F(y(0)). An important condition for consistency is that the final integral

∫ Y0

Y0(0)

1√
E − F(η)

dη = ±
√

2t

diverges (no square root singularity but at least a simple pole) atη = y(0), in order to havet →∞.
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We illustrate this by the following example. The singular boundary value problem

ε2y′′ + y2 = K (x), y(0) = 0, y(1) = 0

whereK (x) > c > 0 is O(1) and sufficiently smooth, has boundary layers ofO(ε) nearx = 0 and
x = 1. We considerx = 0. (The other is analogous.)

An outer approximationy = y0+ . . . is readily found to be

y0(x) = ±
√

K (x),

with sign to be decided. Write for notational convenienceK (0) = k2. The leading order inner equation
for y(x) = Y(t) = Y0+ . . . , wherex = εt , is

Y′′0 + Y2
0 = k2, Y0(0) = 0.

As argued above, for matching it is required thatY0(t)→± k andY′0→ 0. We integrate

1
2(Y

′
0)

2+ 1
3Y3

0 − k2Y0 = E = ±(1
3k3− k3) = 2

3k3.

SinceY0 is small fort → 0 and(Y′0)
2 > 0, the sign ofE can only be positive, andthusouter solution

y0(x) must be negative. Furthermore

2
3k3− 1

3Y3
0 + k2Y0 = 1

3(Y0+ k)2(2k− Y0).

Noting thatY′0 has to be negative, we can finish as usual to find explicitly

∫ 0

Y0

1

(η + k)
√

2k − η dη = 2
3

√
3

[
artanh

(√
2k − Y0

3k

)
− artanh

(√
2
3

)]
=
√

2
3kt

such that

Y0(t) = 2k − 3k tanh2

(√
1
2k t + artanh

(√
2
3

))

6.1.2.6 Logarithmic switchback

It is not always evident from just the structure of the equation what the necessary expansion will look
like. Sometimes it is well concealed and we are only made aware of an invalid initial choice by a
matching failure. In fact, it is also the matching process itself that reveals us the required sequence of
scaling functions. An example of such a back reaction is known aslogarithmic switchback.

Consider the following problem fory = y(x, ε) on the unit interval.

εy′′ + x(y′ − y) = 0, 0< x < 1, y(0, ε) = 0, y(1, ε) = e.

The outer solution appears to have the expansion

y(x, ε) = y0(x)+ εy1(x)+ ε2y2(x)+ O(ε3).
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By trial and error, the boundary layer appears to be located nearx = 0, so the governing equations
and boundary conditions are then

y′0− y0 = 0, y0(1) = e,

y′n − yn = −x−1y′′n−1, yn(1) = 0,

with general solution

yn(x) = An ex +
∫ 1

x
z−1 ex−z y′′n−1(z)dz,

such that

y0(x) = ex,

y1(x) = −ex ln(x),

y2(x) = ex
(

1
2 ln(x)2 + 3

2 − 2x−1 + 1
2x−2

)
,

etc.The boundary layer thickness is found from the assumed scaling x = εmt and noting thaty =
O(1) because of the matching with the outer solution. This leads to the significant degeneration of
m= 1

2, or x = ε 1
2 t . The boundary layer equation fory(x, ε) = Y(t, ε) is thus

Y′′ + tY′ − ε 1
2 tY = 0, Y(0, ε) = 0.

The obvious choice of expansion ofY in powers ofε
1
2 is not correct, as the found solution does not

match with the outer solution. Therefore, we consider the outer solution in more detail for smallx.
Whenx = ε 1

2 t , we have for the outer solution

y(ε
1
2 t, ε) = 1+ ε 1

2 t + ε
(
−1

2 ln ε + 1
2t2− ln t + 1

2t−2+ . . .
)
+ O(ε

3
2 ln ε) (6.5)

(The dots indicate powers oft−2 that appear with higher orderyn.) So we apparently need at least

Y(t, ε) = Y0(t)+ ε
1
2 Y1(t)+ ε ln(ε)Y2(t)+ εY3(t)+ o(ε),

with equations and boundary conditions

Y′′0 + tY′0 = 0, Y0(0) = 0,

Y′′1 + tY′1 = tY0, Y1(0) = 0,

Y′′2 + tY′2 = 0, Y2(0) = 0,

Y′′3 + tY′3 = tY1, Y3(0) = 0,

etc.Hence, the inner expansion is given by

Y0(t) = A0 erf
(

t√
2

)
,

Y1(t) = A1 erf
(

t√
2

)
+ A0

[
t erf

(
t√
2

)
+ 2

(
2
π

) 1
2 (e−

1
2 t2−1)

]
,

Y2(t) = A2 erf( t√
2
),

Y3(t) = A3 erf( t√
2
)+

∫ t

0
e−

1
2 z2
∫ z

0
e

1
2ξ

2
ξY1(ξ)dξ dz.
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Unfortunately,Y3 cannot be expressed in closed form. However, for demonstration it is sufficient to
derive the behaviour ofY3 for larget . As erf(z)→ 1 exponentially fast forz→∞, we obtain

Y1(t) = A0t + A1 − 2
(

2
π

) 1
2 A0 + exponentially small terms.

If Y3 behaves for larget algebraically, thentY′3 ≫ Y′′3 , soY′3 = Y1 − t−1Y′′3 ≃ A0t . By successive
substitution it follows that

Y3(t) = 1
2 A0t2+ (A1 − 2

(
2
π

) 1
2 A0)t − A0 ln(t)+ . . .

For matching of the inner solution, we introduce the intermediate variableη = ε−αx = ε 1
2−αt where

0< α < 1
2, and compare with expression (6.5). We have

A0 + ε
1
2
(
A1 − 2

(
2
π

) 1
2 A0

)
+ εαA0η + ε ln(ε)A2 + 1

2ε
2αA0η

2

+ ε 1
2+α

(
A1 − 2

(
2
π

) 1
2 A0)η − εA0 ln η + ε(1

2 − α)A0 ln ε

≡ 1+ εαη + 1
2ε

2αη2− ε ln η − αε ln(ε)+ 1
2ε

2−2αη−2.

Noting that 2− 2α > 1, we find a full matching with

A0 = 1, A1 = 2
(

2
π

) 1
2 , A2 = −1

2.

This problem is an example where intermediate matching is preferable.

6.1.2.7 Prandtl’s boundary layer analysis.

The start of modern boundary layer theory is Prandtl’s analysis in 1904 of the canonical problem of
uniform incompressible low-viscous flow of main flow speedU∞, viscosityµ and densityρ0, along a
flat plate of lengthL. Consider the stationary 2D Navier-Stokes equations for incompressible flow for
velocity (u, v) and pressurep

ux + vy = 0,

ρ0(uux + vuy) = −px + µ(uxx + uyy),

ρ0(uvx + vvy) = −py + µ(vxx + vyy),

subject to boundary conditionsu = v = 0 at y = 0, 0< x < L.

Make dimensionlessu := U∞u, v := U∞v, p := ρ0U2
∞p, x := Lx, y := Ly. (The scaling of the

pressure may not be evident, but is due to the fact that the low-viscous problem is inertia dominated,
so the pressure gradient, which is really a reaction force, should balance the inertia terms.) We are
left with the dimensionlessReynolds number Re= ρ0U∞L/µ. SinceRe is supposed to be large, we
write ε = Re−1 small. We obtain

ux + vy = 0,

uux + vuy = −px + ε(uxx + uyy),

uvx + vvy = −py + ε(vxx + vyy),

subject to boundary conditionsu = v = 0 at y = 0, 0< x < 1.
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The leading order outer solution fory = O(1) is given by

(u, v, p) = (1,0,0)
but this solution does not satisfy the boundary conditionu = 0 at y = 0 along the plate. So we
anticipate a boundary layer iny, such that the viscous frictionεuyy contributes. When we scalex = X,
y = εnY, u = U , v = εmV , andp = P, we find

UX + εm−nVY = 0,

UUX + εm−nVUY = −PX + εUX X + ε1−2nUY Y,

εmU VX + ε2m−nV VY = −ε−n PY + ε1+mVX X + ε1+m−2nVY Y.

This yields the distinguished limitm= n = 1
2, with the significant degeneration

UX + VY = 0,

UUX + VUY = UY Y,

PY = 0,

known asPrandtl’s Boundary Layer Equations. SinceP = P(X) has to match to the outer solution
p = constant (for this particular flat plate problem), pressuregradient PX = 0 and disappears to
leading order.

Very quickly after Prandtl’s introduction of his boundary layer equations, Blasius (1906) was able
to reduce the equation to an ordinary differential equationby means of a similarity solution for the
stream functionψ , with U = ψY andV = −ψX, of the form

ψ(X,Y) =
√

2X f (η), η = Y√
2X
,

leading to Blasius’ equation
f ′′′ + f f ′′ = 0.

Prandtl’s boundary layer equations, but with other boundary conditions, are also valid in the viscous
wake behind the platex > 1, y = O(ε1/2) (Goldstein, 1930).

The trailing edge region aroundx = 1, y = 0, however, is far more complicated (Stewartson, 1969).
Here the boundary layer structure consists of three layers:y = O(ε5/8),O(ε4/8),O(ε3/8) within
x − 1= O(ε3/8). This is known as Stewartson’s Triple Deck.

y=0
x=1

O(ε3/8)

O(ε5/8)

O(ε4/8)

Prandtl’s Boundary Layer Goldstein’s Wake

Stewartson’s Triple Deck
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6.1.2.8 The rôle of matching

It is important to note that a matching is possible at all! Only a part of the terms can be matched
by selection of the undetermined constants. Other terms arealready equal, without free constants,
and there is no way to repair a possibly incomplete matching here. This is an important consistency
check on the found solution, at least as long as no real proof is available. If no matching appears to
be possible, almost certainly one of the assumptions made with the construction of the solution has to
be reconsidered. Particularly notorious are logarithmic singularities of the outer solution, as we saw
above. See for other examples [13].

Summarizing, matching of inner- and outer expansion plays an important rôle in the following ways:

i) it provides information about the sequence of order (gauge) functions{µk} and {λk} of the
expansions;

ii) it allows us to determine unknown constants of integration;

iii) it provides a check on the consistency of the solution, giving us confidence in the correctness.
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6.2 Matched Asymptotic Expansions: Assignments

6.2.1 Non-uniform approximations and boundary layers

Determine on[0,∞) the outer approximation and all inner approximations (the boundary layers,
corresponding scaling and asymptotic expansions) of

1

x + ε2+ ε3

6.2.2 Boundary layers and integration

Consider the function

f (x, ε) = e−x/ε(1+ x)+ π cos(πx + ε) for 0 6 x 6 1.

a) Construct an outer and inner expansion off with error O(ε3).

b) Integratef from x = 0 to 1 exactly and expand the result up toO(ε3).

c) Compare this with the integral that is obtained by integration of the inner and outer expansions
following the method described in section 6.1.2 (or Example15.30 of SIAM book).

6.2.3 Friedrichs’ model problem

Friedrichs’ (1942) model problem for a boundary layer in a viscous fluid is

εy′′ = a− y′ for 0< x < 1,

wherey(0) = 0, y(1) = 1, anda is a given positive constant of order 1 and independent ofε. Find a
two-term inner and outer expansion of the solution of this problem.

6.2.4 Singularly perturbed ordinary differential equations

Determine the asymptotic approximation of solutiony(x, ε) (1st or 1st+2nd leading order terms for
positive small parameterε→0) of the following singularly perturbed problems.

α andβ are non-zero constants, independent ofε.

Provide arguments for the determined boundary layer thickness and location, and show how free
constants are determined by the matching procedure.

a)
εy′′ − y′ = 2x, y(0, ε) = α, y(1, ε) = β.

b)
εy′ + y2 = cos(x), y(0, ε) = 0, 0 6 x 6 1.

c)
εy′′ + (2x + 1)y′ + y2 = 0, y(0, ε) = α, y(1, ε) = β.
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6.2.5 A hidden boundary layer structure

The problem forφ = φ(x, ε) andε > 0, x > 0

ε2φ′′ − F(x)φ = 0, φ(0) = a, φ′(0) = b

is difficult to analyse asymptotically for smallε (why?). We therefore transform the problem.

a) Rewrite the problem fory(x) given by

φ(x) = a exp

(
1

ε

∫ x

0
y(z)dz

)

What is the initial condition?

b) Assume thatF is sufficiently smooth (analytic), andF(x) > c > 0 along the interval of interest.
Formulate a formal asymptotic solution ofy = y(x, ε) for smallε up to and includingO(ε).

c) Apply this to the asymptotic solution forF(x) = ex.

d) What changes when we apply the transformation

φ(x) = a exp

(
−1

ε

∫ x

0
y(z)dz

)
.

Explain why we obtain, in the end, the same result.

6.2.6 A singularly perturbed nonlinear problem

Find a composite expansion along 06 x 6 1 of the solution of the following boundary value problem

εy′′ + 2y′ + y3 = 0, y(0) = 0, y(1) = 1
2.

6.2.7 A singularly perturbed linear problem

Find a composite expansion of the solution of the following boundary value problem along 0< x < 1

εy′′ = f (x)− y′, where y(0) = 0 and y(1) = 1.

The function f is continuous, independent ofε and of order 1.

6.2.8 A boundary layer problem

(a) Show that the problem

εxmy′ + y2 = cosx along x ∈ [0,1], y(0) = 0

with 0< m< 1, has a boundary layer nearx = 0. Give the corresponding scaling ofx.

(b) The same question if the right-hand side of the equation is sinx.
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6.2.9 Sign and scaling problems

A small parameter multiplying the highest derivative does not guarantee that boundary or interior lay-
ers are present. After solving the following problems directly, explain why the method of matched
asymptotic expansions cannot be used (in a straightforwardmanner) to find an asymptotic approxi-
mation to the solution.

(a) ε2y′′ + ω2y = 0 along 0< x < 1 and ω 6= 0.

(b) εy′′ = y′ along 0< x < 1, while y′(0) = −1 and y(1) = 0.

6.2.10 The Michaelis-Menten model

A classic enzyme-reaction model, for the first time proposedby Michaelis en Menten (1913), consid-
ers a substrate (concentrationS) reacting with an enzyme (concentrationE) to an enzyme-substrate
complex (concentrationC), that on its turn dissociates into the final product (concentration P) and the
enzyme. The reaction of the substrate to the complex is described in timet by the system

dE

dt
= −k1E S+ k−1C + k2C,

dS

dt
= −k1E S+ k−1C,

dC

dt
= k1E S− k−1C − k2C,

dP

dt
= k2C,

with initial valuesS(0) = S0, C(0) = 0, E(0) = E0 andP(0) = 0. The parametersk1, k−1 andk2 are
reaction rates:k1 of the forward reaction,k−1 of the backward reaction, andk2 of the dissociation.

a. If [S] = [C] = [E] = [P] = mol/m3, and[T ] = s, what are the dimensional units ofk1, k−1

andk2?

b. Expressed in de problem variablesS,C, E, P en t , and the problem parametersE0, S0, k1, k−1

andk2, how many dimensionless quantities has this problem?
Note: “mol” is already dimensionless and does not count as separate unit.

c. Show thatE = E0 − C. Ignore the equation forP. Make S, C andt dimensionless such that
we obtain a system of the form

ds

dτ
= −s+ sc+ λc,

ε
dc

dτ
= s− sc− µc,

with s(0) = 1, c(0) = 0.

d. Consider the resulting problem asymptotically forε→0. We see that there are two time scales
(which?). The short one corresponds with the transient switch-on effects, which behave math-
ematically like a boundary layer in time. Solve the problem asymptotically to leading and first
order inε. Hint: it may be convenient to introduce the parameterν = µ− λ.
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6.2.11 Groundwater flow

Through a long strip of ground of widthL between two canals (water levelh0 andh1) the ground
water seeps slowly from one side to the other.

Select a coordinate system such that theZ-axis is parallel to the long axis of the strip and the canals,
the Y-axis is vertical, and theX-axis perpendicular to both.X = 0 corresponds with canal 0, and
X = L with canal 1. Assume that the groundwater level is constant in Z-direction.

Assume that the layer of ground lies on top of a semipermeablelayer at levelY = 0, while the ground
water level is given byY = h(X).

The water leaks through the semi-permeable layer at a rate proportional to the local hydrostatic pres-
sure. As this pressure is on its turn proportional to water level h, this yields a flux densityαh, where
α is a constant.

Water comes in by precipitation (rain). Fluctuations in precipitation are assumed to be averaged away
by the slow groundwater flow, such that the flux densityN from this precipitation is constant in time.
Assume that variations in overgrowth and buildings may result into a position dependentN = N(X).

Between two neighbouring positionsX and X + dX there exists a small difference in height and
therefore in pressure. According to Darcy’s law this creates a flow with a velocity proportional to the
pressure difference, and dependent of the porosity of the ground. As the pressure difference is the
same along the full height, the flow velocity is uniform, and we have

p(X)− p(X + dX) ∼ h(X)− h(X + dX) ∼ v(X)dX,

and the horizontal flux density is proportional to

v = −D
dh

dX

whereD is in general a function of position.

The flux balance along a slice dX is then given by
[
Dh dh

dX

]X+dX

X
= (αh− N)dX, or

d

dX

(
Dh

dh

dX

)
= αh− N

a. We consider the situation withh0 = 0, andD is constant. Make dimensionless withL, h1 and
α: X = Lx, h(X) = h1φ(x), N(X) = αh1K (x), and introduce the positive dimensionless
parameter

ε = Dh1

2αL2
.

b. Assume heavy rain, such thatK (x) = O(1). solve the resulting problem asymptotically for
ε→0.

c. Assume little rain, such thatK (x) = εκ(x), with κ = O(1). Solve the resulting problem
asymptotically forε→0. Take good care atx = 1. The boundary layer is rather complicated
with a layered structure.

d. What changes when we take the slightly more general case ofD = D(X)?
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6.2.12 Stirring a cup of tea

When we stir a cup of tea, the surface of the fluid deforms untilequilibrium is attained between
gravity, centrifugal force and surface tension. This last force is only important near the wall.

Consider for this problem the following model problem.

A cylinder (radiusa, axis vertically) with fluid (densityρ, surface tensionσ ) rotates around its axis
Eez (angular velocity�) in a gravity field−gEez. By the gravity and the centrifugal force the surface
deforms to something that looks like a paraboloid. Within a small neighbourhood of the cylinder wall
the contact angleα is felt by means of the surface tension.

Because of symmetry we can describe the surface by a radial tangent angleψ with the horizon,
parametrized by arc lengths, such thats= 0 corresponds wit the axis, ands= L with the wall of the
cylinder.L is unknown.

Select the origin on the axis at the surface, such that he vertical and radial coordinate are given by

Z(s) =
∫ s

0
sinψ(s′)ds′

R(s) =
∫ s

0
cosψ(s′)ds′.

The necessary balance between hydrostatic pressure and surface tension yields the equation

p0 − ρgZ+ 1
2ρ�

2R2 = −σ
(dψ

ds
+ sinψ

R

)

with unknownp0. Other boundary conditions are

ψ(0) = 0, ψ(L) = α, R(L) = a.

a. Make dimensionless witha: s= at, R= ar , Z = az, L = aλ, and introduce

ε2 = σ

ρga2
, β = p0

ρga
. µ = �2a

g
.

Identify the dimensionless constants in terms of standard dimensionless numbers.

b. Solve the resulting problem asymptotically forε→0. Assume thatµ = O(1). Note thatβ and
λ are unknown and therefore part of the solution.

6.2.13 Fisher’s travelling wave problem

Derive an approximate solution for largec of the Fisher travelling-wave problem (Book eq. 15.19,
(10.70))

U ′′ + c2U ′ + c2U (1−U ) = 0,

(a) on(−∞,∞) with U (−∞) = 1, U (∞) = 0. It is no restriction to assume thatU (0) = 1
2.

(b) on[0,∞) andU (0) = 0, while the previous solution is the outer solution.
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6.2.14 Nonlinear diffusion in a semi-conductor

A simple model for the nonlinear diffusion of a substitutional impurity in a certain type of semi-
conductor is given by the following nonlinear generalisation of the linear diffusion equation.

V∞
∂c

∂t
= Dc

∂

∂x

(
v
∂c

∂x
− c

∂v

∂x

)

∂v

∂t
+ ∂c

∂t
= Dv

∂2v

∂x2

in spatial coordinate 0< x <∞ and timet > 0. Herec denotes the concentration of impurity atoms,
v the concentration of vacancies,V∞ the equilibrium vacancy concentration, andDv andDc represent
vacancy and impurity diffusivities respectively. The quantities V∞, Dv andDc are all assumed positive
constants. The appropriate boundary and initial conditions are

c = C0, v = V0 on x = 0

c→0, v→V∞ as x→∞
c = 0, v = V∞ at t = 0

whereC0 andV0 are positive constants.

Make the problem dimensionless by introducing

c := c/C0, v := v/V∞, t := t/T, x := x/
√

DcT

whereT is a timescale (does it matter which one ?). Introduce the problem parameters

ε2 = Dv/Dc, r = C0/V∞, µ = V0/V∞

Typically, ε is small (the literature gives an example ofε2 ≈ 1/36.

Derive, for smallε, a boundary layer-structured asymptotic expansion of the solution of the problem.

Tip: We saw above that the problem remains exactly the same if we scale time and space such that
t = Tτ , x = Lξ with T = L2. From Buckingham’s5-theorem it then follows that the combination
x2/t is a dimensionless group. Therefore, we can conclude thatc and v must be functions of the
similarity variableη = x/

√
t alone.

Before attempting to construct an approximate solution, first rewrite the set of partial differential
equations into a set of ordinary differential equations (and boundary conditions) forv = v(η) and
c = c(η) along 0≤ η <∞.

6.2.15 Heat conduction

Consider steady-state heat conduction in the rectangular region 06 x′ 6 L,−D 6 y′ 6 D. Assume
that the temperature is prescribed along the edgesx′ = 0 andx′ = L and that the edgesy′ = ±D
are insulated. We are interested in the problem for a slendergeometry,i.e. ε = D/L ≪ 1. If we
normalizex with respect toL andy with respect toD, we need to solve on the rectangle 06 x 6 1,
−1 6 y 6 1 the equation

ε2Txx + Tyy = 0, T(0, y, ε) = f (y), T(1, y, ε) = g(y), Ty(x,±1, ε) = 0
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1. Construct an outer expansion in the form

T(x, y, ε) = T0(x, y) + ε2T1(x, y)+ O(ε4)

2. Construct appropriate inner expansions along the edgesx = 0 andx = 1.
Hint: Solve the Laplace equation on a semi-infinity strip by means of a trigonometric-exponential
(Fourier) series expansion.

3. Verify that matching is possible and determine the unknown constants.
4. Solve the problem exactly and compare this with the results found.

6.2.16 Polymer extrusion

Extrusion of a polymer through a circular capillary is described by the pressureP(t) in the vessel,
from which the polymer is pressed, and the flow rateQ(t) through the capillary.

The extrusion process is determined by the compressibilityequation for the polymer in the vessel
and the equation of axial momentum conservation for the flow through the capillary. In linear ap-
proximation and after neglecting the inertial effects, we obtain the following dimensionless system
(0< ε ≪ 1)

dP(t)

dt
= −Q(t), P(0) = 0;

dQ(t)

dt
= 1

ε

(
P(t)− Q(t)

)
, Q(0) = 1.

Determine the first term in:

1. the outer expansion;
2. the inner expansion;
3. the composite expansion.
4. Compare the composite expansion with the exact solution.Can you improve the composite ex-

pansion?

6.2.17 Torsion of a thin-walled tube

Torsion of a thin-walled tube produces a relatively large camber of the cross section. For aclamped
tube this is blocked at the clamped cross section. This blockage mechanism plays locally (near the
clamped cross section) an essential role in the distortion and stress distribution of the tube.

Consider a one-sided (atx = 0) clamped tube (here isx the axial co-ordinate, where 0< x < l .)
De cross section at the other endx = l is loaded by a torsional momentM, but is otherwise free.
The global (i.e. per cross section) distortion variables are: the torsion angle θ(x) (in radians), the
camber factorβ(x) (in m−1) and the cross sectional shearκ(x) (dimensionless). These three variables
satisfy the following set differential equations (they follow from global equilibrium conditions for the
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tube) and boundary conditions (wherea1 . . . a4 are constants representative of the rigidity of the cross
section)

a1β
′′ − a2β + a3θ

′ − a2κ
′ = 0,

a3β
′ − a2θ

′′ + a3κ
′′ = 0,

a2β
′ − a3θ

′′ + a2κ
′′ − a4κ = 0,

and
op x = 0 : β(0) = θ(0) = κ(0) = 0,

op x = l : β ′(l ) = 0, a2β(l )+ a2κ
′(l )− a3θ

′(l ) = 0, a2θ
′(l ) = M.

The first set boundary conditions describes the tube being fully clamped atx = 0, while the second
tells us that the end cross sectionx = l is free, apart from the prescribed torsional momentM.

For a rectangular tube with wall thicknesst , cross sectional width and height 2b and 4b, respectively,
and lengthl (with t ≪ b≪ l but (tl/b2) = O(1)) we have

a1 = 4Eb5t, a2 =
6E

(1+ ν)b
3t, a3 =

2E

(1+ ν)b
3t, a4 =

4Et3

3(1− ν2)b
.

Introduceε = t/b, 0< ε ≪ 1, and note that then alsob/ l = O(ε).

1. Make the formulation dimensionless. Reduce the system to1 equation for 1 unknown (for exam-
pleβ) plus boundary conditions.

2. Determine the first term of the outer expansion, asymptotically for ε→0.
3. The same for the inner expansion (where is the boundary layer?).
4. The same for a composite expansion.
5. Compare the composite expansion with the exact solution.Can you improve the composite ex-

pansion?

6.2.18 A visco-elastic medium forced by a piston

A linear visco-elastic medium (Maxwell model) is contained in a rigid cylindrical vessel, closed by
a freely movable piston. As of timet = 0, a constant (compressive) force is applied to the piston.
The vertical (i.e. in z–direction) displacement at a material point of the visco-elastic medium isw =
w(z, t). With 0< ε ≪ 1, we have forw the following normalised, dimensionless system:

t > 0, 0< z< 1 : ε
∂2w

∂t2
− ∂3w

∂z2∂t
− ∂

2w

∂z2
= 0,

t = 0, 0< z< 1 : w(z,0) = ∂w

∂t
(z,0) = 0,

t > 0, z= 0 : w(0, t) = 0,

t > 0, z= 1 : ∂w

∂z
(1, t)+ ∂2w

∂z∂t
(1, t) = −1.

i) Determine asymptotically for smallε (all to leading order) an outer expansion ofw.
ii) Determine position and thickness of the boundary layer,and an inner expansion ofw.

iii) Determine a composite expansion ofw.
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6.2.19 Heat conduction in fluid flow through a slit

y

x V 2h

V t

L

An inviscid fluid flows with constant, uniform velocityV into a 2-dimensional slit. The slit has height
2h and lengthL, whereh/L ≪ 1 (see figure). At the entry plane of the slit, the temperatureof the
fluid is Ti . The upper and lower wall have temperatureTw (Tw < Ti ). The straight front of the flow,
that is at timet located atx = V t, is thermally isolated from the environment.

1) Consider the temperatureT = T(x, y, t) for:

0< x < V t 6 L, −h < y < h, 0< t < L/V .

Formulate the equation forT with the corresponding boundary and initial value conditions.

2) Make dimensionless.

3) Consider the ”thin-layer-approximation” (method of slow variation) for this problem, and give
the solution.

4) What condition is not satisfied by the solution found under3)? So where do you expect a
boundary layer? Calculate the correction to the solution of3) as a result of this boundary layer
(accurate up toO(h/L)).

6.2.20 The sag of a slender plate supported at the ends

A long, slender, strip shaped plate, of width 2a and length 2b wherea/b≪ 1, is along its long sides
(x = ±a) supported, while the short sides (y = ±b) are free. The plate is positioned in the horizontal
(x, y)–plane and is loaded by its own weight (loading per unit surface q measured in N/m2, in the
z–direction). The sagw(x, y) of the plate satisfies the following differential equation

−a < x < a

−b < y < b

}
∇4w = 11w = ∂4w

∂x4
+ 2

∂2w

∂x2∂y2
+ ∂

4w

∂y4
= q

D
,
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(1 = ∇2, D is a plate constant, measured in Nm), plus boundary conditions

x = ±a w = ∂2w

∂x2
= 0,

y = ±b
∂2w

∂y2
+ ν ∂

2w

∂x2
= 0,

∂3w

∂y3
+ (2− ν) ∂

3w

∂x2∂y
= 0,

(ν is Poisson’s ratio,ν ≈ 0.3 (dimensionless)).

i) Scale the spatial coordinates likex = ax̂ and y = b̂y, and the sag likew = (qa4/D)ŵ, and
introduceε = a/b≪ 1.

ii) Determine asymptotically for smallε (to leading order) an outer expansionw0 of w.
iii) Argue why boundary conditions can be applied atx = ±1 but not aty = ±1.
iv) Determine position and thickness of the boundary layersy = ±1+ δ(ε)η, and formulate the

equations for an inner expansion ofw. Solve this to leading order by splittingw = w0+W and
assuming the Fourier representationW =∑∞n=0 fn(η) cos(λnx), whereλn = (n+ 1

2)π .

(Splitting offw0 fromw is advantageous because this avoids non-uniform convergence problems
of the Fourier series nearx = ±1.)

6.2.21 Heat conduction along cylinder walls

A circular infinitely long cylinder is applied with a thin thermally conducting outer layer, with inner
radiusR1 and outer radiusR2 (R = 1

2(R1 + R2), δ = 1
2(R1 − R2), d/R = δ ≪ 1). The interface

between the cylinder and the layer is thermally isolated.r andθ are polar co=ordinates in a cross
sectional plane of the cylinder.z is the axial co-ordinate. The cylinder rotates with constant angular
velocityω (measured in rad/sec) along thez-as.

The purpose of this layered cylinder is to transport heat from one place to another. While the outer
layer is heated at one side, the same amount of heat is removedat the opposite side. This is modelled
as follows:

• at the outer wallr = R2 is along the part of the boundary given by 0< θ < γ , (γ ∈ (0, 1
2π) a

positive, constant and uniform heat fluxq prescribed;

• at the outer wallr = R2 is along the part of the boundary given byπ < θ < π + γ a negative,
constant and uniform heat flux−q prescribed;

• along the rest of the outer wall the flux is zero.

At t = 0 the layer has a uniform temperatureT0.

The temperatureT we are looking for is independent ofz, soT = T(r, θ, z) and satisfies the following
equation with initial and boundary conditions:

∂T

∂t
+ ω∂T

∂θ
− κ

(∂2T

∂r 2
+ 1

r

∂T

∂r
+ 1

r 2

∂2T

∂θ2

)
= 0, R1 < r < R2, 0 6 θ < 2π, t > 0;
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(κ = k/ρc is the thermal diffusion coefficient, measured in m2/sec)

T(r, θ,0) = T0, R1 < r < R2, 0 6 θ < 2π;
∂T

∂r
(R1, θ, t) = 0, 0 6 θ < 2π, t > 0;

k
∂T

∂r
(R2, θ, t) = q, 0< θ < γ,

= −q, π < θ < π + γ,
= 0, γ < θ < π, ∨ π + γ < θ < 2π;

(k measured in kg m/K sec3), plus the condition of periodicity

T(r, θ + 2π, t) = T(r, θ, t).

As we are mainly interested in the temperature variation inθ , rather than inr , we introduce the mean
temperaturēT

T̄(θ, t) = 1

2d R

∫ R2

R1

rT (r, θ, t)dr.

Show that integration inr -direction of the above system (after multiplication byr ) after neglecting of
O(δ)-terms, yields

∂ T̄

∂t
+ ω∂ T̄

∂θ
− κ

R2

∂2T̄

∂θ2
= Q(θ), 0 6 θ < 2π, t > 0;

with

Q(θ) = Rq

ρc
h(θ),

and
T̄(θ,0) = T0, T̄(θ + 2π) = T̄(θ, t).

Non-dimensionalisation according to

t̂ = ωt, T̂ = ρcω

Rq
(T − T0), en

κ

ωR2
= ε,

eventually leads to

∂ T̂

∂t
+ ∂ T̂

∂θ
− ε ∂

2T̂

∂θ2
= h(θ), 0 6 θ < 2π, t > 0,

and
T̂(θ,0) = 0, T̂(θ + 2π, t) = T̂(θ, t),

with

h(θ) = 1, 0< θ < γ,

= −1, π < θ < π + γ,
= 0, γ < θ < π ∨ π + γ < θ < 2π.

Assume in the following 0< ε ≪ 1.
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i) Determine to leading order the outer expansion ofT (≡ T̂ ). Where do we observe in this
solution irregularities?Hint: consider the gradient inθ-direction ofT . So where do we expect
boundary layers?

ii) Determine for one of these boundary layers (the other is similar) its thickness and the corre-
sponding inner expansion.

6.2.22 Cooling by radiation of a heat conducting plate

Consider the stationary 2D-problem of a heat conducting semi-infinite plate, which is being heated at
the short side, while along the long sides the heat disappears slowly by weak radiation (see figure).

T = f (y2)

x = 0

y = 1

y = −1

Ty = −εT4

T→0

We make lengths dimensionless by half of the thickness of theplate, and the (absolute!) temperature
by a characteristic temperature at the short side.

From symmetry we consider only the upper half. In dimensionless variables the problem is then given
by

0< x, −1< y < 1 : ∇2T = 0

x = 0, T = f (y2) = O(1)

y = 1,
∂T

∂y
= −εT4 (0< ε ≪ 1)

y = 0,
∂T

∂y
= 0

x→∞ T→0

i) As the radiation is small, the temperature decays slowly in positivex–direction. Assume that the
corresponding length scale isX = δ(ε)x. Determineδ(ε) by assuming a “thin layer” approxima-
tion, and balancing the radiation with the changes inx–direction.

ii) Rewrite the problem inX en y. This is a singularly perturbed problem with a boundary layer of
thicknessO(δ) at x = 0.

iii) Finish i), by determining the leading order outer solution (up to a constant). Use the fact that
T→0 for X→∞.

iv) Determine the boundary layer problem, and determine theleading order boundary layer solution
in the form of a Fourier expansion. (Assume for simplicity that f (y2) = ∑∞

n=0 an cos(nπy).)
Determine by matching the unknown constant of iii).

v) What is the second order scaling function of the boundary layer solution, in other words, what is
λ1 in T = T0 + λ1T1. Write down the equation and boundary conditions forT1. The solution is
very simple.
Compare now the influx atx = 0 with the outflux aty = 1.
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6.2.23 The stiffened catenary

A cable, suspended between the pointsX = 0, Y = 0 andX = D, Y = 0, is described as a linear
elastic, geometrically non-linear inextensible bar of weight Q per unit length.

(0,0) (D,0)
−H ←−

1
2 QL ↑

−→ H
↑ 1

2 QL

Figure 6.1: A suspended cable

At the suspension points the cable is horizontally clamped such that the cable hangs in the vertical
plane through the suspension points.

The total lengthL of the cable is much larger thanD, while the bending stiffnessE I is relatively
small, such that the cable is slack.

In order to keep the cable in position, the suspension pointsapply a reaction force, with horizontal
componentH resp.−H , and a vertical componentV , resp.QL−V . From symmetry we already have
V = 1

2 QL, but H is unknown.

With s the arc length along the cable,ψ(s) the tangent angle with the horizon, andX(s),Y(s) the
cartesian co-ordinates of a point on the cable, the shape of the cable is given by

E I
d2ψ

ds2
= H sinψ − (Qs− V) cosψ

ψ(0) = ψ(L) = 0

X(L) =
∫ L

0
cosψ(s)ds = D

Y(L) =
∫ L

0
sinψ(s)ds = 0

a. Make dimensionless withL: s= Lt , X = Lx, Y = Ly, D = Ld, and introduceε2 = E I/QL3,
h = H/QL.

b. Solve the resulting problem asymptotically forε→0. Assumed = O(1), h = O(1).

As posed,d is known andh is unknown, and soh = h(ε,d). It may be more convenient to deal
with the inverse problem first, whereh is known, andd results. Of course, then isd = d(ε,h).
Finally, after having found the relation betweend andh (asymptotically), we can solve this for
h and givend.
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6.2.24 A boundary layer problem with x-dependent coefficients

Suppose thaty(x) with 0< ε ≪ 1 satisfies the boundary value problem

εy′′ + a(x)y′ + b(x)y = 0, y(0) = A, y(1) = B,

while a(x) andb(x) are analytic in[0,1] (i.e.have convergent Taylor series in any point∈ [0,1].

a. If a > 0, find an approximate solution and show that it has a boundarylayer atx = 0.

b. If a < 0, find an approximate solution and show that it has a boundarylayer atx = 1.

c. Finally, if a(x0) = 0 for x0 ∈ (0,1), wherea < 0 for x < x0 anda > 0 for x > x0, show
that no boundary layer at the end points can exist, and therefore an interior layer must exist atx0.

Defineβ = b(x0)

a′(x0)
, and show that asx ↓↑ x0, the outer solutions inx < x0, resp.x > x0 satisfy

y ≃ c±|x − x0|−β,

where the constantsc± are known, but in general are not the same.

Hence show by rescalingx andy as

y(x) =
( ε

a′(x0)

)− 1
2β

Y(X), x = x0 +
( ε

a′(x0)

) 1
2
X,

the equation can be approximately written in the transitionregion as

Y′′ + XY′ + βY = 0

with matching conditions
Y ∼ c±|X|−β as X→±∞.

Solve this problem forβ = −1. (Use Maple or Mathematica.)

6.2.25 A catalytic reaction problem in 1D

Consider the steady-state catalytic reaction problem of the book, section 16.8, but now in one dimen-
sion. This yields, for the concentrationc, the scaled equation with boundary conditions

d2c

dx2
= λ c

α + c
, 0< x < 1

c(1) = 1, c′(0) = 0.

Study carefully the 3D leading order asymptotic solution for α→0 whileλ = O(1), given in section
16.8.3, and determine the analogous solution for 1D.

Solve the inner solution (implicitly) and find integration constants by matching. See also the note on
page 546, above 16.6.5.
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6.2.26 A cooling problem

Consider a synthetic fibre, shaped like an infinite cylinder of radius R, with densityρf , specific heat
capacitycf and thermal conductivityκf . At t = 0 the fibre has uniform temperatureT = T0. Inside
the fibre the temperatureTf is described by

ρf cf
∂Tf

∂t
− κf ∇2Tf = 0.

Outside the fibre is air with corresponding parametersρa, ca andκa, and a temperatureTa given by

ρaca
∂Ta

∂t
− κa∇2Ta = 0.

At t = 0 the air temperature is equal toT∞. For r→∞, Ta→T∞. At the interfacer = R, we have
continuity of temperature and heat flux:

Tf = Ta, κf n·∇Tf = κan·∇Ta.

Assume that

δ = κa

κf
≪ 1, ε = κf

ρf cf

ρaca

κa
≪ 1

Assume cylindrical symmetry, such thatT = T(r, t), while

∇ = er
∂

∂r
, ∇2 = 1

r

(
r
∂

∂r

)
.

a) ScaleT = T∞ + T0θ , r = Rx, andt = (R2ρaca/κa)τ , because we are interested in the behaviour
on the time scale of the heat diffusion in air.

b) Make a suitable choice to expressδ = δ(ε). Note: it is very hard to completely analyse a multi-
small parameter problem asymptotically. Therefore it isalways wiseto reduce the problem to a
single parameter problem by expressing one into the other.

c) Find an asymptotic approximation ofθa andθf for ε→0.

6.2.27 Visco-elastic fibre spinning

The continuous stretching of viscous and elasto-viscous liquids to form fibres is a primary manufac-
turing process for textiles and glass fibres. The melt spinning process for the manufacture of fibres is
shown schematically in the figure. Molten material is extruded through a small hole into cross-flowing
ambient air at a temperature below the solidification temperature of the material. The solidified poly-
mer or glass is wound up on a reel moving at a higher speed than the mean extrusion velocity, resulting
in thinning of the filament.
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z

r Mean axial speedW0 at z= 0

2R0

L

Solidification pointz= L

w = DRW0

Spinline forceF

Conservation of momentum for a Maxwell model, ignoring inertia, surface tension, air friction and
gravity, yields

τzz+ λ
[
w

dτzz

dz
− 2τzz

dw

dz

]
= 2η

dw

dz
,

τrr + λ
[
w

dτrr

dz
+ τrr

dw

dz

]
= −ηdw

dz

wherew is the cross-wise averaged axial velocity,η denotes the coefficient of dynamic viscosity,λ
denotes the coefficient of elastic relaxation, andw(0) = W0 is the initial axial velocity. Note that in
practiceW0 is not given but a result from the drawing forceF applied at an end positionz = L (the
solidification point).

We may assume that, due to surface tension, the cross-sectional shape of the fibre is circular, of radius
(say)R= R(z). We defineR0 = R(0).

The normal components of the stress tensorn·σ vanish at the surfacer = R(z), leading to

σrz − Rzσzz= 0, σrr − Rzσrz = 0 at r = R.

For small Rz (the assumption of a slowly varying diameter) it follows that σrr = (Rz)
2σzz ≃ 0.

Furthermore, when we integrate along a cross section

∫ 2π

0

∫ R

0

[
∂σzz

∂z
+ 1

r

∂

∂r

(
r τrr

)]
r dr dθ = 2π

d

dz

∫ R

0
σzzr dr + 2πRz

[
−rσzz+ rσrz

]
r=R
=

2π
d

dz

∫ R

0
σzzr dr = 0

Forσzz practically constant along a cross section this leads to

πR2σzz= F.
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To make the problem tractable we ignore possible entrance effect and assumeτrr = 0 at z = 0.
Altogether we have

σzz= −p+ τzz=
F

πR2
,

σrr = −p+ τrr = 0.

Conservation of mass of incompressible flow yields the axialvolume flux

Q = πR2w = πR2
0W0.

We make dimensionless

w = W0v, z= Ly, τzz= T
F

πR2
0

, τrr = P
F

πR2
0

and introduce the dimensionless parameters

q = ηπR2
0W0

F L
, ε = λW0

L

whereq = O(1) is the ratio between viscous and axial forces andε is called the Weissenberg number.
We will analyse asymptotically the problem of smallε.

Noting thatR2
0/R2 = w/W0 = v, we have

T − P = v,

T + ε
[
v

dT

dy
− 2T

dv

dy

]
= 2q

dv

dy
,

P + ε
[
v

dP

dy
+ P

dv

dy

]
= −q

dv

dy

with
v(0) = 1 and P(0) = 0.

a) EliminateP and d
dy T to find

v + εv′(2v − 3T) = 3qv′

wherev′ = d
dyv.

b) EliminateT to find the single equation forv

ε
(
v2v′′ − v(v′)2

)
+ 2ε2v(v′)3− vv′ + 3q(v′)2 = 0

Note that this is a 2d-order autonomous ordinary differential equation.
c) Introduceφ(x) = v′(y) andx = ln(v) and reformulate the equation forv into a 1st-order non-

autonomous ordinary differential equation with boundary conditions, forφ = φ(x, ε).
d) Solve this equation by matched asymptotic expansions forsmall ε up to and including terms of

O(ε). It is more work, but it is possible to get also theO(ε2)-terms. Note that a boundary layer at
x = 0 may be anticipated.

e) Rewrite the leading order outer solution into a solution for v. This is the solution for a purely
viscous fibre, with negligible elastic effects.
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6.2.28 The weather balloon

In this exercise we will consider a simple model of the dynamics of a weather balloon in a non-uniform
but stationary atmosphere. In order to make analysis possible, we consider the Standard Atmosphere
which is explicitly given. We start with some preliminary information.

Ideal Gas

In the ideal gas model the relation between pressurep, densityρ and absolute temperatureT is
approximated by

p = ρRT

whereR is constant, the so-called gas constant.

From known reference values at a pressure ofp = 101.325 kPa we can derive the respective gas
constants for air, helium and hydrogen as follows

Air : T = 288.15 K, ρ = 1.22500 g/l→ Ra = p/ρT = 287.053
Helium: T = 273.15 K, ρ = 0.1786 g/l→ Rh = p/ρT = 2076.99
Hydrogen: T = 273.15 K, ρ = 0.08988 g/l→ Rw = p/ρT = 4127.17

Table 6.1: Gas constants

Standard Atmosphere

A simplified model of the atmosphere, know as the Standard Atmosphere, is useful as reference. It
starts with a simple relation between temperatureT and heighth (above sea level), the assumption of
hydrostatic equilibrium dp/dh = −gρ and the ideal gas law.

In the troposphere (06 h 6 11 km) the air temperatureT is assumed to decay linearly, such that
pressure and density at heighth above sea level are given by

T = T0

(
1− h

L

)
K with T0 = 288.15 K, L = 103T0/6.5= 44331 m

p = p0

(
T

T0

)α
Pa, with p0 = 101325 Pa, g = 9.81 m/s2, α = gL

T0R
= 5.256

ρ = ρ0

(
T

T0

)α−1

kg/m3, with ρ0 = 1.225 kg/m3.

The Balloon

A balloon of massm and negligible own weight is filled with a gas of densityρg (helium or hydrogen).
The volume of the balloon isV = m/ρg. We assume that the balloon is made of arbitrarily flexible
and extensible material such that it always attains a spherical shape. If the radius isr , the volume is
V = 4

3πr 3 and the cross sectional surfaceA = πr 2.
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The weight of the balloon isgm, while the Archimedean upward force isgρaV . The balloon is released
at time t = 0 from stationary state at sea levelh = 0 in a steady atmosphere, describable by the
Standard Atmosphere. We are interested in its heighth and velocity

.
h at timet .

As the balloon surface is perfectly flexible, it does not add extra pressure, and the pressure inside and
outside the balloon are equal:pa = pg. (In reality, no balloon is of course perfectly flexible, andat
some point the surface will not expand further. This is wherethe balloon stops rising.)

The temperature inside the balloon will be the temperature outside with some delay, to be modelled by
a temperature diffusion model which we will not include here. One extreme is to modelTg = T0 for
very fast balloons and the other extreme is to modelTg = Ta for very slow balloons. For mathematical
convenience we will consider the second assumption, but theother case is similar.

The Forces

The balloon is subject to inertia−m
..
h, buoyancy forcegρaV −gmand air drag−1

2ρa

.
h

2
Cd A, where

drag coefficientCd is for a sphere (of not too low and not too high Reynolds number) in the order of
0.5 [Batchelor 1967, p. 341].

Together these forces cancel out each other, so altogether we have the following equation for the
dynamics of the balloon

m
d2h

dt2
= gρaV − gm− 1

2
ρa

(
dh

dt

)2

Cd A.

Simplifying the problem to obtain a model

By using the above relations we find

m
d2h

dt2
= gm

ρa

ρg
− gm− 1

2
πCdρa

(
3V

4π

)2/3(dh

dt

)2

d2h

dt2
= g

(
ρa

ρg
− 1

)
−

1
2πCd

m
ρa

(
3m

4πρg

)2/3(dh

dt

)2

d2h

dt2
= g

(
ρa

ρg
− 1

)
−

1
2πCd

m1/3

(
3

4π

)2/3
ρa

ρ
2/3
g

(
dh

dt

)2

Now we use the equal pressures inside and outside

1= pa

pg
= ρaRaTa

ρgRgTg
= ρaRa

ρgRg

such that

ρg =
Ra

Rg
ρa.

If we further introduceq = 1
6(α − 1) = 0.7093, we have

d2h

dt2
= g

(
Rg

Ra
− 1

)
− 1

2
πCd

(
3Rg

4πRa

)2/3 (ρa

m

)1/3
(

dh

dt

)2

,
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and eventually an equation inh

d2h

dt2
= g

(
Rg

Ra
− 1

)
− 1

2
πCd

(
3Rg

4πRa

)2/3 (ρ0

m

)1/3
(

1− h

L

)2q (dh

dt

)2

.

Non-dimensionalisation

We make dimensionless by assuming

h = ℓH, t = τs

such that

ℓH ′′

τ 2
= g

(
Rg

Ra
− 1

)
− 1

2
πCd

(
3Rg

4πRa

)2/3 (ρ0

m

)1/3
(

1− ℓ

L
H

)2q (
ℓH ′

τ

)2

.

A possible lengthscale could be a radiusr , for example att = 0, but this is obviously for the global
dynamics only relevant in a very indirect way. The most natural, inherent, length scale forh is obvi-
ouslyℓ = L. A reference time scale is less obvious. If the buoyancy and drag are dominating for most
of the time, we chooseτ such that these forces balance:

τ =
√

1

2
πCd

Ra

Rg − Ra

(
3Rg

4πRa

)2/3 L2

g

(ρ0

m

)1/3
.

For 1 kg helium this characteristic time isτ = 6235.47 s or 104 minutes. For 1 kg hydrogen, it is
τ = 5352.07 s or 89 minutes.

The relative importance of inertia against the other forcesis characterised by the parameter

ε =
L
τ2

g
(

Rg

Ra
− 1

) = 2

πCd

(
4πRa

3Rg

)2/3 1

L

(
m

ρ0

)1/3

,

which amounts here toε = 1.86 · 10−5 for 1 kg helium andε = 1.18 · 10−5 for 1 kg hydrogen. Soε
is a small parameter and most of the time inertia is unimportant. Hence,τ is the typical time it takes
for h to vary by an amount comparable withL.

We finally obtain the model in its most transparent form

εH ′′ = 1− (1− H )2q(H ′)2

with initial conditionsH (0) = H ′(0) = 0. Because of these we may assume thatH ′(s) > 0.

This dimensionless form of the problem confirms that the inertial forcesεH ′′ are negligible during
most of the balloon’s flight. Neglecting this term altogether, on the other hand, reduces the order of
the differential equation from two to one, which is not possible since we have two initial conditions.
The answer is of course that there exists a boundary layer near the starting times = 0. We will solve
this problem therefore by application of the Method of Matched Asymptotic Expansions.

Asymptotic analysis

Solve this problem asymptotically for smallε up to first and second order.
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6.2.29 A chemical reaction-diffusion problem (singular limit)

Reconsider the chemical reaction-diffusion problem of problem 3.4.8 (page 55)

1

r 2

d

dr

(
r 2 dc

dr

)
= φ2cn, 0< r < 1,

c(1) = 1, c′(0) = 0,

but now for the asymptotic behaviour ofc whenε = φ−1→ 0. Solve first the exact solution forn = 1
to guess the general structure. Find the leading order innerand outer solution.
Hint. Introducey = rc.

6.2.30 An internal boundary layer (Oxford, OCIAM, 2003)

The functiony(x, ε) satisfies the equation

εy′′ + yy′ − y = 0 for x ∈ (0,1)

Consider the following singularly perturbed boundary value problems forε→ 0.

a) Suppose thaty(0) = 0 and y(1) = 3. Show that a solution can be found with a boundary layer
at x = 0. Give leading order approximations for the inner and outerexpansions.

b) Suppose thaty(0) = −3
4 and y(1) = 5

4. Show that a solution is possible having an interior
layer wherey jumps from−M to M, for someM. Find the leading order matched asymptotic
expansions.

6.2.31 The Van der Pol equation with strong damping

By a suitable coordinate transformation we can write Van derPol’s equation with strong damping as

εy′′ + y− (1− y2)y′ = 0 ε→ 0.

We are interested in aperiodicsolution, so the choice of the initial conditions is part of the problem.
By seeking appropriate “outer” and “transition” layers, show that an approximate periodic solution
can be constructed to leading order in the form of matched asymptotic expansions. Show that the
period is approximately 3− 2 ln 2.

6.2.32 A beam under tension resting on an elastic foundation

An elastic beam of bending stiffnessE I is resting on an elastic foundation of modulusk(s), while it
is under tensionT and under a distributed downward force per lengthp(s). The distance along the
beam iss. The small vertical deflectionw of the beam satisfies the ordinary differential equation

E I
d4w

ds4
− T

d2w

ds2
+ kw = p

Assume that there is an inherent length scaleL, such that we can scales = Lx. Assume thatk is
typically of order K , i.e. k(s) = Kκ(x), p is typically of orderP, i.e. p(s) = P f (x), andw is
typically of orderW, i.e.w(s) = W y(x).
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a) Show, by choosing suitable lengthsL andW that the above equation can be written in dimension-
less form as

ε2(y′′′′ + κy)− y′′ = f.

b) Suppose that the beam rests on a foundation with modulus that varies linearly along the length of
the beam,i.e.κ(x) = 1+mx. Other than the tension, there is no external forcing,i.e. f(x) = 0.
Model the beam as semi-infinite alongx ∈ [0,∞), with a horizontally clamped, prescribed
deflection atx = 0 and (due to the increasing foundation modulus) no deflection for x → ∞.
We arrive then at the differential equation and boundary conditions

ε2(y′′′′ + (1+mx)y)− y′′ = 0, y(0) = 1, y′(0) = 0, y(x), y′(x)→ 0 (x→∞).

If m = O(1) andε → 0, find a first-order asymptotic approximation ofy based on a boundary
layer structure nearx = 0.
HINT. Don’t be fooled by the form of the equation. The outer variable is not necessarilyx, and
should be found from a judicious balancing of terms of the equation.
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Chapter 7

Multiple Scales, WKB and Resonance

7.1 Theory

7.1.1 Multiple Scales: general procedure

Suppose a functionϕ(x, ε) depends on more than one length scale acting together, for examplex,
εx, and ε2x. Then the function does not have a regular expansion on the full domain of interest,
x 6 O(ε−2) say. It is not possible to bring these different length scales together by a simple coordinate
transformation, like in the method of slow variation or the Lindstedt-Poincaré method, or to split up
our domain in subdomains like in the method of matched asymptotic expansions. Therefore we have
to find another way to construct asymptotic expansions, valid in the full domain of interest. The
approach that is followed in themethod of multiple scalesis at first sight rather radical: the various
length scales are temporarily considered as independent variables:x1 = x, x2 = εx, x3 = ε2x, and the
original functionϕ is identified with a more general functionψ(x1, x2, x3, ε) depending on a higher
dimensional independent variable.

ϕ(x, ε) = A(ε)e−εx cos(x − θ(ε)) becomesψ(x1, x2, ε) = A(ε)e−x2 cos(x1− θ(ε)). �

Since this identification is not unique, we may add constraints such that this auxiliary functionψ does
have a Poincaré expansion on the full domain of interest. After having constructed this expansion, it
may be associated to the original function along the linex1 = x, x2 = εx, x3 = ε2x.

The technique, utilizing this difference between small scale and large scale behaviour is the method
of multiple scales. As with most approximation methods, this method has grown out of practice,
and works well for certain types of problems. Typically, themultiple scale method is applicable to
problems with on the one hand a certain global quantity (energy, power), which is conserved or almost
conserved, controlling the amplitude, and on the other handtwo rapidly interacting quantities (kinetic
and potential energy), controlling the phase. Usually, this describes slowly varying waves, affected by
small effects during a long time. Intuitively, it is clear that over a short distance (a few wave lengths)
the wave only sees constant conditions and will propagate approximately as in the constant case, but
over larger distances it will somehow have to change its shape in accordance with its new environment.

107



FUNDAMENTALS AND APPLICATIONS OFPERTURBATION METHODS IN FLUID DYNAMICS

7.1.2 A practical example: a damped oscillator

We will illustrate the method by considering a damped harmonic oscillator

d2y

dt2
+ 2ε

dy

dt
+ y = 0 (t > 0), y(0) = 0,

dy(0)

dt
= 1 (7.1)

with 0< ε ≪ 1. The exact solution is readily found to be

y(t) = e−εt
sin
(√

1− ε2 t
)

√
1− ε2

. (7.2)

A naive approximation of thisy(t), for smallε and fixedt , would give

y(t) = sint − εt sint + O(ε2), (7.3)

which appears to be useful fort = O(1) only. For larget the approximation becomes incorrect:

1) if t > O(ε−1) the second term is of equal importance, or larger, as the firstterm and nothing is left
over of the slow exponential decay;

2) if t > O(ε−2) the phase has an error ofO(1), or larger, giving an approximation of which even
the sign may be in error.

We would obtain a far better approximation if we adopted two different time variables,viz. T = εt
andτ =

√
1− ε2 t , and changed toy(t, ε) = Y(τ, T, ε) where

Y(τ, T, ε) = e−T sin(τ )√
1− ε2

.

It is easily verified that a Taylor series ofY in ε yields a regular expansion for allt .

If we construct a straightforward approximate solution directly from equation (7.1), we would get the
same approximation as in (7.3), which is too limited for mostapplications. However, knowing the
character of the error, we may try to avoid them and look for the auxiliary functionY, instead ofy.
As we, in general, do not know the occurring time scales, their determination becomes part of the
problem.

Suppose we can expand
y(t, ε) = y0(t)+ εy1(t)+ ε2y2(t)+ · · · . (7.4)

Substituting in (7.1) and collecting equal powers ofε gives

O(ε0) : d2y0

dt2
+ y0 = 0 with y0(0) = 0,

dy0(0)

dt
= 1,

O(ε1) : d2y1

dt2
+ y1 = −2

dy0

dt
with y1(0) = 0,

dy1(0)

dt
= 0.

We then find
y0(t) = sint, y1(t) = −t sint, etc.

which reproduces indeed expansion (7.3). The straightforward, Poincaré type, expansion (7.4) breaks
down for larget , whenεt > O(1). It is important to note that this caused by the fact that anyyn is ex-
cited in its eigenfrequency (by the “source”-terms−2dyn−1/dt), resulting in resonance. We recognise
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the generated algebraically growing terms of the typetn sint andtn cost , calledsecular terms(defi-
nition 5.1.1). Apart from being of limited validity, the expansion reveals nothing of the real structure
of the solution, and we change our strategy to looking for an auxiliary function dependent on different
time scales. We start with the hypothesis that, next to a fasttime scalet , we have the slow time scale

T = εt. (7.5)

Then we identify the solutiony with a suitably chosen other functionY that depends on both variables
t andT

Y(t, T, ε) = y(t, ε).

There exist infinitely many functionsY(t, T, ε) that are equal toy(t, ε) along the lineT = εt in
(t, T)-space. So we have now some freedom to prescribe additional conditions. With the unwelcome
appearance of secular terms in mind it is natural to think of conditions, to be chosen such that no
secular terms occur when we construct an approximation.

Since the time derivatives ofy turn into partial derivatives ofY, i.e.

dy

dt
= ∂Y

∂t
+ ε ∂Y

∂T
,

equation (7.1) becomes forY

∂2Y

∂t2
+ Y + 2ε

(∂Y

∂t
+ ∂2Y

∂t∂T

)
+ ε2

(∂2Y

∂T2
+ 2

∂Y

∂T

)
= 0. (7.6)

Assume the expansion

Y(t, T, ε) = Y0(t, T)+ εY1(t, T)+ ε2Y2(t, T)+ · · · (7.7)

and substitute this into (7.6) to obtain to leading orders

∂2Y0

∂t2
+ Y0 = 0,

∂2Y1

∂t2
+ Y1 = −2

∂Y0

∂t
− 2

∂2Y0

∂t∂T
,

with initial conditions

Y0(0,0) = 0,
∂

∂t
Y0(0,0) = 1,

Y1(0,0) = 0,
∂

∂t
Y1(0,0) = −

∂

∂T
Y0(0,0).

The solution forY0 is easily found to be

Y0(t, T) = A0(T) sin(t − θ0(T)) with A0(0) = 1, θ0(0) = 0.

This gives a right-hand side for theY1-equation of

−2
(

A0 +
∂A0

∂T

)
cos(t − θ0)+ 2A0

∂θ0

∂T
sin(t − θ0).

109 07-03-2018



FUNDAMENTALS AND APPLICATIONS OFPERTURBATION METHODS IN FLUID DYNAMICS

No secular terms occur (no resonance betweenY1 andY0) if these terms vanish:

A0 +
∂A0

∂T
= 0 yielding A0 = e−T ,

∂θ0

∂T
= 0 yielding θ0 = 0.

Together we have indeed constructed an approximation of (7.2), valid for t ≤ O(ε−1).

y(t, ε) = e−εt sint + O(ε).

Note (this is typical of this approach), that we determinedY0 only on the level ofY1, but without
having to solveY1 itself.

The present approach is by and large the multiple scale technique in its simplest form. Variations on
this theme are sometimes necessary. For example, we have notcompletely got rid of secular terms.
On a longer time scale (t = O(ε−2)) we have again resonance inY2 because of the “source”e−T sint ,
yielding termsO(ε2t). We see that a second time scaleT2 = ε2t is necessary. From the exact solution
we may infer that these longer time scales are not really independent and it may be worthwhile to try
a fast time of strained coordinates type:τ = ω(ε)t = (1+ε2ω1+ε4ω4+ . . .)t . In the present example
we would recoverω(ε) =

√
1− ε2.

7.1.3 The air-damped resonator.

In dimensionless form this is given by

d2y

dt2
+ εdy

dt

∣∣∣∣
dy

dt

∣∣∣∣+ y = 0, with y(0) = 1,
dy(0)

dt
= 0. (7.8)

By rewriting the equation into the form

d
dt

[
1
2(y
′)2+ 1

2 y2
]
= −ε(y′)2|y′|

and assuming thaty andy′ = O(1), it may be inferred that the damping acts on a time scale ofO(ε−1).
So we conjecture the presence of the slow time variableT = εt and introduce a new dependent
variableY that depends on botht andT . We have

T = εt, y(t, ε) = Y(t, T, ε),
dy

dt
= ∂Y

∂t
+ ε ∂Y

∂T
,

and obtain for equation (7.8)

∂2Y

∂t2
+ Y + ε

(
2
∂2Y

∂t∂T
+ ∂Y

∂t

∣∣∣∣
∂Y

∂t

∣∣∣∣
)
+ O(ε2) = 0

Y(0,0, ε) = 1,
( ∂
∂t
+ ε ∂

∂T

)
Y(0,0, ε) = 0.

The error ofO(ε2) results from the approximation∂
∂t Y + ε ∂∂T Y = ∂

∂t Y + O(ε), and is of course only
valid outside a small neighbourhood of the points where∂

∂t Y = 0. We expand

Y(t, T, ε) = Y0(t, T)+ εY1(t, T)+ O(ε2),
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to find for the leading order

∂2Y0

∂t2
+ Y0 = 0, with Y0(0,0) = 1,

∂

∂t
Y0(0,0) = 0.

The solution is given by

Y0 = A0(T) cos(t − θ0(T)), where A0(0) = 1, θ0(0) = 0.

For the first order we have the equation

∂2Y1

∂t2
+ Y1 = −2

∂2Y0

∂t∂T
− ∂Y0

∂t

∣∣∣∣
∂Y0

∂t

∣∣∣∣

= 2
dA0

dT
sin(t − θ0)− 2A0

dθ0

dT
cos(t − θ0)+ A2

0 sin(t − θ0)| sin(t − θ0)|,
with corresponding initial conditions. The secular terms are suppressed if the first harmonics of the
right-hand side cancel. For this we use the Fourier series expansion

sin(t) | sin(t)| = − 8

π

∞∑

n=0

sin(2n+ 1)t

(2n− 1)(2n+ 1)(2n+ 3)
.

We obtain the equations

2
dA0

dT
+ 8

3π
A2

0 = 0 and
dθ0

dT
= 0,

with solutionθ0(T) = 0 and

A0(T) =
1

1+ 4
3π T

.

Altogether we have the approximate solution

y(t, ε) = cos(t)

1+ 4
3π εt
+ O(ε).

This approximation appears to be remarkably accurate. See Figure 7.1 where plots, made for a parame-
ter value ofε = 0.1, of the approximate and a numerically “exact” solution arehardly distinguishable.
A maximum difference is found of 0.03.

0 20 40 60 80 100
−1

−0.5

0

0.5

1

Figure 7.1: Plots of the approximate and a numerically “exact” solution y(t, ε) of the air-damped
resonator problem forε = 0.1.
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7.1.4 The WKB Method: slowly varying fast time scale

The method of multiple scales fails when the slow variation is caused by external effects, like a slowly
varying problem parameter. In this case the nature of the slow variation is not the same for all time,
but may vary. This is demonstrated by the following example.Consider the problem

..
x + κ(εt)2x = 0, x(0, ε) = 1,

.
x(0, ε) = 0,

whereκ = O(1). It seems plausible to assume 2 time scales: a fast oneO(κ−1) = O(1) and a slow
one O(ε−1). So we introduce next tot the slow scaleT = εt , and rewritex(t, ε) = X(t, T, ε). We
expandX = X0+ εX1+ . . ., and obtainX0 = A0(T) cos(κ(T)t − θ0(T)). Suppressing secular terms
in the equation forX1 requiresA′0 = κ ′t − θ ′0 = 0, which is impossible.

Here, the fast time scale is slowly varying itself
and the fast variable is to be strained locally by a
suitable strain function. This sounds far-fetched,
but is in fact quite simple: we introduce a fast time
scale via a slowly varying function.

Often, it is convenient to write this function in the
form of an integral, because it always appears in
the equations after differentiation. For a function
ω to be found

τ =
∫ t

0
ω(εt ′, ε)dt ′ = 1

ε

∫ T

0
ω(z, ε)dz, where T = εt,

while for x(t, ε) = X(τ, T, ε) we have

.
x= ωXτ + εXT and

..
x= ω2Xττ + εωT Xτ + 2εωXτT + ε2XT T.

After expandingX = X0+ εX1+ . . . andω = ω0+ εω1+ . . . we obtain

ω2
0X0ττ + κ2X0 = 0,

ω2
0X1ττ + κ2X1 = −2ω0ω1X0ττ − ω0T X0τ − 2ω0X0τT . (7.9)

The leading order solution isX0 = A0(T) cos(λ(T)τ − θ0(T)), whereλ = κ/ω0. The right-hand side
of (7.9) is then

2ω0A0λ(ω1λ+ λTτ − θ0T ) cos(λτ − θ0)+ (A0λ)
−1(ω0A2

0λ
2)T sin(λτ − θ0).

Suppression of secular terms requiresλT = 0. Without loss of generality we can takeλ = 1, orω0 =
κ. Then we needω1 = θ0T , which just yields thatλτ −θ0 = τ −θ0 = ε−1

∫ T
ω(z)dz−

∫ T
ω1(z)dz=

ε−1
∫ T
ω0(z)dz+ O(ε). In other words, we may just as well takeω1 = 0 andθ0 = γ a constant.

Finally we haveω0A2
0λ

2 = κA2
0 = a a constant1, or A0 = a/

√
κ. Altogether we have

x(t) ≃ a√
κ(εt)

cos
(∫ t

0
κ(εt ′)dt ′ − γ

)

1A conserved slow-time quantity likeκA2
0 is called anadiabatic invariant.
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The introduction of a slow time scale together with the slowly varying fast time scale, is generally
associated with the WKB Method (after Wentzel, Kramers and Brillouin). Usually, the WKB As-
sumption (Ansatz, Hypothesis) is restricted to the contextof waves, and assumes the solution to be of
a particular form. This is further explained below.

For linear wave-type problems we may anticipate the structure of the solution and assume the so-called
WKB Ansatzor ray approximation

y(t, ε) = A(T, ε)eiε−1
∫ T

0 ω(τ,ε) dτ . (7.10)

The method is again illustrated by the example of the damped oscillator (7.1), but now in complex
form, so we consider the real part of (7.10). After substitution and suppressing the exponential factor,
we get

(1− ω2)A+ iε
(
2ω
∂A

∂T
+ ∂ω
∂T

A+ 2ωA
)
+ ε2

(∂2A

∂T2
+ 2

∂A

∂T

)
= 0,

Re(A) = 0, Re(iωA+ εA′) = 0 at T = 0.

Unlike in the multiple scales method the secular terms will not be explicitly suppressed, at least not to
leading order. The underlying additional condition here isthat the solution of the present typeexists
in the first place and that each higher order correction is no more secular than its predecessor. The
solution is expanded as

A(T, ε) = A0(T)+ εA1(T)+ ε2A2(T)+ · · ·
ω(T, ε) = ω0(T)+ ε2ω2(T)+ · · · .

Note thatω1 may be set to zero since the factor exp(i
∫ T

0 ω1(τ )dτ) may be incorporated inA. By a
similar argument,viz. by re-expanding the exponential for smallε, all other termsω2, ω3, . . . could
be absorbed byA (this is often done). This is perfectly acceptable for the time scaleT = O(1), but
for larger times we will not be able to suppress higher order secular terms. So we will find it more
convenient to include these terms and use them whenever convenient.

We substitute the expansions and collect equal powers ofε to obtain toO(ε0)

(1− ω2
0)A0 = 0

with solutionω0 = 1 (or−1, but that is equivalent for the result). ToO(ε1) we have then

A′0 + A0 = 0 with Re(A0) = 0, Im(ω0A0) = −1 atT = 0,

with solution A0 = −i e−T . To orderO(ε2) the equation reduces to

A′1 + A1 = −i(1
2 + ω2)e−T , with Re(A1) = 0, Im(ω0A1) = Re(A′0) at T = 0,

with solution
ω2 = −1

2, A1 = 0.

Note that if we had chosenω2 = 0, the solution would beA1 = −1
2T e−T . Although by itself correct

for T = O(1), it renders the asymptotic hierarchy invalid forT > O(1/ε) and is therefore better
avoided. The solution that emerges is indeed consistent with the exact solution.
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7.1.5 Higher dimensions

In more dimensions, the assumed form of (7.10), where an integral occurs in the argument of the
exponential, is not practical. In this case it is more convenient to write

ϕ(x, t; ε) = A(X, T; ε)eiε−1�(X,T), (7.11)

while for clarity of notation we leave� independent ofε and introduce the slowly varying frequency
and wave vector

ω = ∂�

∂T
, κ := −∇�,

where∇ := ∂
∂X ex + ∂

∂Y ey + ∂
∂Z ez. This relation implies the continuity equation of waves

∂κ

∂T
+∇ω = 0. (7.12)

Consider the following example of a one-dimensional wave equation with slowly varying coefficients.

∂

∂t

(
m(X, T)

∂

∂t
ϕ
)
= ∂

∂x

(
C(X, T)

∂

∂x
ϕ
)
+ B(X, T)ϕ, (7.13)

whereX = εx andT = εt are slow variables. We assume the solutionϕ to take the form given by
(7.11). This yields the equation

− ω2m A+ iε

A

∂

∂T

(
ωm A2) = −κ2C A− iε

A

∂

∂X

(
κC A2)+ B A+ O(ε2). (7.14)

As before, we expand
A = A0 + εA1 + O(ε2).

After substitution and collecting equal powers ofε, we get from leading order the slowly varying
dispersion relation forω andκ, or eikonal-type equation for�

ω2m= κ2C − B. (7.15)

Equation (7.12) turns into
∂κ

∂T
+ V(κ)

∂κ

∂X
= 0,

showing that bothκ andω propagate with the group velocity (section 8.5.1)

V = dω

dκ
= κC

ωm
. (7.16)

The next order yields a conservation-type equation forA0

∂

∂T

(
ωm A2

0

)
+ ∂

∂X

(
κC A2

0

)
= 0. (7.17)

(It should be noted that this result reflects the underlying physics, and therefore depends on the original
equation. In general the resulting equation is not of conserved type.) The pairωm A2

0 andκC A2
0 are

calledadiabatic invariants, because they correspond to density and flux of a quantity that is conserved
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on the slow time and length scales. This is seen as follows. When we integrate (7.17) between the
moving boundariesX = X1(T) andX = X2(T), we obtain

∫ X2

X1

∂

∂T

(
ωm A2

0

)
+ ∂

∂X

(
κC A2

0

)
dX = d

dT

∫ X2

X1

ωm A2
0 dX

− V2[ωm A2
0]X2 + V1[ωm A2

0]X1 + [κC A2
0]X2 − [κC A2

0]X1 = 0

whereV1 = d
dT X1 andV2 = d

dT X2. This reduces to

d

dT

∫ X2

X1

ωm A2
0 dX = 0,

if the velocity of either end point is equal to the group velocity (7.16). In other words, the integral of
ωm A2

0 is conserved between two points moving with the local group velocity.

Suppose, for definiteness, thatφ denotes position andm mass. Then, ifω andκ are real, we can derive
from (7.17) with (7.15) the conservation laws forwave action(1

2ωm|A0|2 is the wave action density
[35])

∂

∂T

(
1
2ωm|A0|2

)
+ ∂

∂X

(
1
2κC|A0|2

)
= 0 (7.18a)

andenergy(1
2ω

2m|A0|2 is the wave energy density)

∂

∂T

(
1
2ω

2m|A0|2
)
+ ∂

∂X

(
1
2ωκC|A0|2

)
= 0 (7.18b)

by substitutingA0 = |A0|exp(i arg A0), dividing out the complex exponent, and taking the real part
of what remains.

7.1.6 Weakly nonlinear resonance problems

Similar arguments may be applied to certain weakly nonlinear resonance problems. Consider first the
following slightly damped2 harmonic oscillator with harmonic forcing

y′′ + ω2
0y+ 2ω0 sinθy′ = ε cos(ωt), y(0) = y′(0) = 0, (7.19)

(with sinθ > 0 small) which has the solution

y(t) = ε e−ω0t sinθ (ω
2− ω2

0) cos(ω0t cosθ)− tanθ(ω2+ ω2
0) sin(ω0t cosθ)

(ω2− ω2
0)

2+ (2ωω0 sinθ)2

− ε (ω
2− ω2

0) cos(ωt)− 2ωω0 sinθ sin(ωt)

(ω2− ω2
0)

2+ (2ωω0 sinθ)2
.

When sinθ is very small, we can distinguish an initial regime where thesolution becomes approxi-
mately

y(t) ≃ εcos(ω0t)− cos(ωt)

ω2− ω2
0

= 2ε
sin
(
ω−ω0

2 t
)

sin
(
ω+ω0

2 t
)

ω2− ω2
0

2By writing the friction coefficient 2ω0 sinθ in this way, the solution has a neater form.
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and the steady state regime fort →∞ where the solution becomes

y(t) ≃ −ε cos(ωt)

ω2− ω2
0

.

We are interested in the behaviour near resonance, whenω ≈ ω0. Let us assume, for definiteness, that
ω,ω0 = O(1) andω − ω0 = O(ε). Note that this implies that the factorω2− ω2

0 = O(ε).

Initially, we have two time scales,viz.a fast time(ω+ω0)t = O(t) and a slow time(ω−ω0)t = O(εt).
As long as(ω − ω0)t = O(ε), solution y is of the order of magnitude of its driving force, namely
y = O(ε). However, once we are in the steady state, the solution growsan order of magnitude higher
and becomesy = O(1).

It is important to realise that near resonance we are not ableto assess the order of magnitude ofy from
the driving force alone. We have to be more careful.

Consider these arguments to obtain (as a typical example) the steady state, near resonance solution of
the weakly non-linear, harmonically driven oscillator

y′′ + ω2
0y+ εay3 = εC cos(ωt), ω = ω0(1+ εσ ), ω, ω0,a,C, σ = O(1) (7.20)

asymptotically forε→ 0. (Note thatσ anda do not need to be positive.)

In steady state, the solution will follow the periodicity ofthe driving force and will therefore be
periodic with frequencyω. In other words,y will be a function f (ωt) of ε-dependent argumentω(ε)t .
Like in the Lindstedt-Poincaré and Multiple Scales methods, an asymptotic expansion in powers ofε
(assuming a smoothf ) will include secular terms like

f (ωt) = f (ω0t)+ εσ t f ′(ω0t)+ . . .

and so spoil any regular expansion on a time scale larger thanO(1). It is therefore better to absorb the
ε-dependentω into a new time variableτ = ωt . Next to this, it is convenient to rescalea andy

τ = ωt, a = αω6
0

C2
, y(t) = C

ω2
0

φ(τ)

to obtain
(1+ εσ )2φττ + φ + εαφ3 = ε cosτ. (7.21)

Neglecting for the moment the non-linear term, we have seen above that away from resonance,y
follows the driving force and remainsy = O(ε), but near resonance it grows to become at steady
statey = O(ε/(ω − ω0) = O(1). So we assumeφ = O(1) and assume the Poincaré expansion

φ = φ0+ εφ1+ . . .

which we substitute in the equation. By collecting corresponding orders we obtain in the usual way

φ′′0 + φ0 = 0,

φ′′1 + φ1+ 2σφ′′0 + αφ3
0 = cosτ.

Initially, φ0 is totally undetermined, and we can say little more than the general solution

φ0(τ ) = A0 cosτ + B0 sinτ.
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We may see thatA0 andB0 is determined at the next order, but it is not immediately clear how. First
orderφ1 is driven by both the external force cosτ and terms inherited from leading orderφ0, and we
need to knowφ0 before we can proceed at all. So the situation looks rather hopeless.

There is, however, information that we haven’t used yet. While, on the one hand,φ1 is excited at
resonance (by the external force and the cosτ and sinτ terms fromφ0) leading to algebraic growth
by secular terms, we are, on the other hand, looking for a steady state solution such thatεφ1 remains
O(ε) and does not grow toO(1).

In other words, the secular terms ofφ1 should not be present and have to be suppressed. This provides
us with theconsistency conditionthat yields the missing equations to determineA0 andB0.

From the driving terms ofφ1

φ′′1 + φ1 = cosτ − 2σφ′′0 − αφ3
0

=
[
1+ 2σ A0 − 3

4αA0(A
2
0 + B2

0)
]
cosτ +

[
2σ B0− 3

4αB0(A
2
0 + B2

0)
]
sinτ

− 1
4α
[
A0(A

2
0 − 3B2

0) cos(3τ)+ B0(3A2
0 − B2

0) sin(3τ)
]

we obtain the conditions that suppress the secular terms

1+ 2σ A0 − 3
4αA0(A

2
0 + B2

0) = 0,

2σ B0− 3
4αB0(A

2
0 + B2

0) = 0.

It is immediately clear thatB0 = 0, while A0 is found from a (real) root of the 3rd-order polynomial

4x3 − λ(3x + 1) = 0, x = 2
3σ A0, λ = 128σ 3

81α
(7.22)

We find 1 root forλ < 1, 2 roots forλ = 1 and 3 roots forλ > 1.
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x

λ=−0.8 λ=0.6

λ=1.2 4x3

Figure 7.2: Examples of intersection points ofy = 4x3 andy = λ(3x + 1).

We can go on to determineφ1. Again this will contain undetermined coefficients, which have to be
determined at the next order.
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7.2 Multiple Scales, WKB and Resonance: Assignments

7.2.1 Non-stationary Van der Pol oscillator

Consider the weakly nonlinear oscillator, described by theVan der Pol equation, for variabley =
y(t, ε) in t :

y′′ + y− ε(1− y2)y′ = 0

asymptotically for small positive parameterε. (Check the phaseplane figure 9.2 in section 9.1.)

Construct by means of the method of multiple scales a first-order approximate solution. You are free
to choose convenient (non-trivial) initial values.

7.2.2 The air-damped, unforced pendulum

For sufficiently high Reynolds numbers, the air-damped pendulum may be described by

m
..
φ +C

.
φ |

.
φ | + K sinφ = 0, φ(0) = ε,

.
φ (0) = 0,

whereε > 0 is small and problem parametersm, K andC are positive. Assume thatC/m = O(ε).
Use the method of multiple scales to get an asymptotic approximation ofφ = φ(t, ε) for ε→ 0.

7.2.3 The air-damped pendulum, harmonically forced near resonance

When an oscillator of resonance frequencyω0 is excited harmonically, with a frequencyω nearω0,
the resulting steady state amplitude may be much larger thanthe forcing amplitude. Nonlinear effects
may be called into action and limit the amplitude, which otherwise (in the linear model) would have
been unbounded at resonance. In the following we will study an air-damped oscillator with harmonic
forcing near resonance. The chosen parameter values are such that the resulting amplitude is just large
enough to be bounded by the nonlinear damping.

a) Consider the damped harmonic oscillator with harmonic forcing

m
..
φ +Kφ = F cos(ωt).

Parametersm, K andF are positive. Find the steady state solution,i.e. the solution harmonically
varying with frequencyω.

b) Consider the air-damped version

m
..
φ +C

.
φ |

.
φ | + Kφ = F cos(ωt),

where problem parametersm, K ,C andF are positive.C andF are small in a way thatF = εK
andC = εmβ whereε is small. The resonance frequency of the undamped linearised problem
is ω0 =

√
K/m, while ω/ω0 = � = 1 + εσ with detuning parameterσ = O(1). We are

interested in the (bounded) steady state, and initial conditions are unimportant. Use similar tech-
niques as used with the methods of multiple scales and Lindtedt-Poincaré to get an asymptotic
approximation ofφ = φ(t) for ε→ 0.
Hint: make t dimensionless byτ = ωt . Write the leading order solution in the formφ0 =
A0 cos(τ − τ0) and findA0 as a function ofσ from φ1. Note thatA0(σ )→ 0 if σ → ±∞, which
is in agreement with (a).
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c) The same problem as above but with a nonlinear restoring force K sinφ, i.e.

m
..
φ +C

.
φ |

.
φ | + K sinφ = F cos(ωt),

while we now chooseF = ε3K , C = εmβ andω/ω0 = � = 1+ ε2σ . Note that we have to
rescaleφ.
The main difference with (b) is thatA0 cannot be expressed explicitly inσ , but if we plotσ as a
function of A0, we can recognise the physical solutions that satisfyA0(σ )→ 0 if σ →±∞.

7.2.4 Relativistic correction for Mercury

The relativistic correction in the calculation of the advance of the perihelion of Mercury.
In the relativistic mechanics of planetary motion around the Sun, one comes across the problem of
solving

d2u

dθ2
+ u = α(1+ εu2) for 0< θ <∞,

whereu(0) = 1 andu′(0) = 0. Hereθ is the angular coordinate in the orbital plane,u(θ) = 1/r ,
wherer is the normalized radial distance of the planet from the Sun,andα is a positive constant. Note
that if ε = 0 then one obtains the Newtonian description.

a) Find a first-term approximation of the solution that is valid for largeθ .

b) Using the results of part (a), find a two-term expansion of the angle1θ between successive peri-
helions, that is, the angel between successive maxima inu(θ).

c) The parameters in the equation are

ε = 3
( h

crc

)2
, α = rc

a(1− e2)
,

whereh is the angular momentum of the planet per unit mass,rc is a characteristic orbital distance,
c is the speed of light,a is the semi-major axis of the elliptic orbit, ande is the eccentricity of the
orbit.

For the planet Mercury,h/c = 9.05 · 103 km, rc = a = 57.91 · 106 km, ande = 0.20563
(Nobili and Will, 1986). It has been observed that the precession of Mercury’s perihelion, defined
as1φ = 1θ − 2π , after a terrestrial century is 43.11′′ ± 0.45′′ (note that Mercury orbits the sun
in 0.24085 years). How does this compare with your theoretical result in (b)?

The problem is classic, and formed one of the famous experimental evidences of Einstein’s theory of
relativity. Make sure to do the deceivingly trivial calculations correctly. The results will agree!

7.2.5 Weakly nonlinear advection-diffusion

Consider the following advection problem with weak diffusion:

∂u

∂t
+ ∂u

∂x
= ε ∂

2u

∂x2
, for −∞ < x <∞, 0< t,
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whereu(x,0) = f (x). Using multiple scales, find a first-term approximation of the solution that is
valid for larget . Assume (and use) the fact thatf is Fourier transformable:

f̂ (α) =
∫ ∞

−∞
f (x)eiαx dx, f (x) = 1

2π

∫ ∞

−∞
f̂ (α)e−iαx dα.

Apply the formal result to

f (x) = e−
1
2 x2
, f̂ (α) =

√
2π e−

1
2α

2
.

7.2.6 Golden Ten: an application of multiple scales

Golden Ten [36] is a modified version of Roulette, played witha small ball moving in a relatively large
conical bowl. At the end of the game the ball falls in one of 26 numbered compartments placed along
the number ring. In contrast to Roulette, Golden Ten is a so-called observation game: the players have
to stake only after the ball has reached a certain level at thebowl. It is claimed that the possibility to
observe a part of the orbit of the ball enables the player to make a better than random guess on the
outcome.

er

ez

R

O

g

r

α

sphere (radiusa)

Figure 7.3: The Golden Ten bowl; cross-sectional view

To construct a mechanical model (equations of motion) for the motion of the ball the following basic
assumptions are made:

i) the ball is a homogeneous sphere (massm, radiusa);

ii) the bowl is rotationally symmetric and purely horizontal (angle of inclination:α);

iii) the ball rolls without slipping (the surface of the bowlis rather smooth, but rough enough to
prevent the ball from slipping);

iv) the motion of the ball is completely deterministic (of course, in reality there are, inevitably, ran-
dom effects, but they are not taken into account in our mechanical model);
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b

er
eϕ ϕ

v

Figure 7.4: Top-view of the bowl with moving sphere

v) the ball is launched along a vertical rim (radiusRrim) at the top of the bowl (after rolling a few
laps alongside the rim the ball smoothly leaves the rim, and gradually spirals down the bowl).

A frame {Oe1e2e3}, moving with the ball, is introduced as shown in Fig. 7.4. Theorigin O is fixed
in the apex of the bowl, but the frame rotates with angular velocity

.
ϕ about a vertical axis throughO,

such that the point of contactP between ball and bowl is always on thee1-axis (distanceO P = r ).
Hence, the angular velocity of the frame is

� = .
ϕ sinαe1+

.
ϕ cosαe3 , (7.23)

(note that
.
ei= �× ei ) and the position vector of the centreo of the ball is

xo = r e1+ ae3 . (7.24)

For later use, we introduce the distanceR from o to the vertical throughO, i.e.

R= r cosα − a sinα . (7.25)

The velocityvo =
.
xo and the accelerationao =

.
vo=

..
xo of o can now be expressed in the variablesR

andϕ and their derivatives (all further details of the derivations are omitted here).

The angular velocityω of the ball must be derived from the condition that the ball rolls, implying that
the velocity of the pointP of the ball that is momentarily in contact with the bowl must be zero. This
yields

ω = −R
.
ϕ

a
e1+

.
R

a cosα
e2+

.
ψ e3 , (7.26)

where
.
ψ= (ω, e3) is the so-calledspin. So the ball rolls ine1-(radially, downwards) ande2-(tangential)

direction and spins about the normal on the drum surface.
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The equations of motionfor the ball follow from the law of momentum and the law of moment of
momentum (Newton-Euler equations), reading

.
p= m

..
xo= F, and

.
D= I

.
ω= Mo , (7.27)

whereI = 2
5ma2, the central moment of inertia of the ball. Furthermore,F andMo are the total force

and the total moment abouto on the ball, respectively.

Four distinct forces act on the ball:

i) the gravitational force ino

Fg = −mgsinαe1−mgcosαe3 ; (7.28)

ii) the resistive force ino due to air friction (alinear air resistance model is chosen here, so the
coefficient f is constant)

Fa = −m fvo , (7.29)

(the coefficient of resistivity is written as:m f for convenience);

iii) the normal force inP
Fn = Ne3, (N > 0) ; (7.30)

iv) the frictional force inP due to dry friction

Fd = D1e1+ D2e2 ; (7.31)

(here:N, D1 andD2 are unknown).

Note that of these four forces onlyFd contributes toMo by a moment equal to

Md = (−ae3× Fd) = aD2e1− aD1e2 .

We neglect resistive moments due to rolling and spinning of the ball. Thus,

F = Fg + Fa + Fn + Fd, Mo = Md .

With use of the preceding results in the Newton-Euler equations (7.27) and after the elimination of
the unknownsN, D1 andD2, the following three equations of motion forR(t), ϕ(t) andψ(t) emerge

..
R= −5

7 f
.
R+R

.
ϕ

2
cos2 α + 2

7a
.
ϕ

.
ψ sinα cosα − 5

7g cosα sinα , (7.32a)
..
ϕ = −5

7 f
.
ϕ − 2

R

.
R

.
ϕ , (7.32b)

..
ψ = −1

a

.
R

.
ϕ tanα . (7.32c)

For theinitial conditionswe assume that the ball rolls along the rim fort < 0, and looses contact with
the rim att = 0 (smoothly). When the ball rolls along the rim, as well as on the bowl, the following
relation must hold

a
.
ψ cosα + R

.
ϕ (1− sinα) = 0 , (for t 6 0) . (7.33)
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At the moment of looseningt = 0 there is no force acting between the ball and the rim. Hence,at
t = 0 it is as if the ball moves,momentarily, in a circular orbit with

R= R0 = Rrim − a,
.
R=

..
R= 0,

.
ϕ= ωo,

.
ψ= �0 ,

with ω0 and�0 still unknown.

From these considerations the following set of initial conditions can be derived (the details are left to
the student)

R(0) = R0 = Rrim − a,
.
R (0) = 0 ,

ϕ(0) = 0,
.
ϕ (0) = ω0 =

√
5g sinα

R0(7 cosα − 2(1− sinα) tanα)
,

.
ψ (0) = �0 = −

R0ω0

a cosα
(1− cosα) .

(7.34)

Here,ϕ(0) is arbitrarily chosen zero, because only the relative difference(ϕ(t)− ϕ(0)) is relevant.

With (7.32) and (7.34) the motion of the ball is completely described. These equations can not be
solved analytically; only by numerical integrationR(t), ϕ(t) andψ(t) can be determined. Here, we
shall try to find some asymptotic results: one for the total path of the ball from the rim to the number
ring and a more local one, restricted to one orbit (“ellipse”) of the ball around the vertical axis.

parameter value unit parameter value unit

m 0.0383 kg a 0.0175 m
Rrim 0.487 m R0 0.469 m
Rnum 0.205 m α 0.0831 rad

g 9.81 m/sec2 f 0.014 sec−1

total time for one gamet f ≈ 116 sec

Table 7.1: Numerical values for parameters of Golden Ten.

Normalization of the equations of motion

If f = 0 (no air resistance) the equations of motion (7.32) permit the following two first integrals:

R2 .
ϕ= C1 = R2

0ω0 , (7.35)

and

a
.
ψ −R

.
ϕ tanα = C2 =

R0ω0

cosα
, (7.36)

(both are examples of conservation of moment of momentum, the first being Kepler’s law; also the
total mechanical energy is conserved, but we shall not use this here).

We should note that iff is positive but small, the changes in the functions introduced in the left-hand
sides of (7.35) and (7.36) will be small too. Therefore, we introduce the new variables

y1(t) =
R2

.
ϕ

R2
0ω0

, y2(t) =
−a

.
ψ cosα + R

.
ϕ sinα

R0ω0
, y3(t) =

R(t)

R0
. (7.37)

123 07-03-2018



FUNDAMENTALS AND APPLICATIONS OFPERTURBATION METHODS IN FLUID DYNAMICS

In observations of the real motion of the ball (i.e. in playing Golden Ten) the angleϕ is the more
natural variable compared to the timet . Therefore, let us replace the variablet by ϕ, by use of

d

dt
= .
ϕ

d

dϕ
= ω0

u2

v

d

dϕ
, (7.38)

where

u(ϕ) = 1

y3
, and v(ϕ) = 1

y1
. (7.39)

Finally, we cally2 = w(ϕ), and we introduce the new dimensionless parameters (which both are small
according to Table 7.1)

ε = 5 f

7ω0
, δ = sinα . (7.40)

With all this (and withg sinα cosα = ω2R0(7− 2 sinα − 5 sin2 α)/5) the system (7.32)-(7.34) can
be rewritten as

dv

dϕ
= ε v

2

u2
,

dw

dϕ
= −δε1

u
,

d2u

dϕ2
= −(1− 5

7δ
2)u+ (1− 2

7δ − 5
7δ

2)
v2

u2
+ 2

7δvw ,

u(0) = v(0) = w(0) = 1,
du

dϕ
(0) = 0 .

(7.41)

In this form the system is adequate for asymptotics. However, in order to keep the now following two
exercises manageable (andonly for that reason!) we shall neglect in (7.41) all terms containing δ. This
results in the following reduced system, in which also the influence of the spin, represented byw(ϕ),
is disappeared,

dv

dϕ
= ε v

2

u2
, v(0) = 1 ,

d2u

dϕ2
+ u− v

2

u2
= 0, u(0) = 1,

du

dϕ
(0) = 0 .

(7.42)

Although this system is a (too) strong simplification of (7.41), we will see that it still contains most of
the characteristic features of the motion of the ball in the bowl.

Solve the above system of equations by a multiple scales analysis (to leading orders only).
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7.2.7 Modal sound propagation in slowly varying ducts

Consider the problem of sound propagation in a cylindrical duct of slowly varying cross section and
slowly varying sound speed. The radius is given byr = R(εx), and the sound speed is given by
c0 = c0(εx).

Note that sound speedc0, mean pressurep0 and mean densityρ0 are related byρ0c2
0 = 1.4· p0 (in air).

The mean pressure is under usual atmospheric circumstancesconstant. Therefore, the mean density is
also slowly varying.

The walls of the duct are soft and sound absorbing, as the wallis an impedance wall, also with (in axial
direction) slowly varying impedance. We consider sound waves of a fixed frequencyω and rewrite the
sound pressure by introducing the complex pressurep as

physical sound pressure= Re(p(x, r, ϑ)eiωt ).

The modified reduced wave equation forp is

∇·(c2
0∇ p

)
+ ω2p = 0.

The impedance boundary condition is (rewritten to the pressure)

(
∇ p· En) = − iωρ0

Z
p at r = R

with Z = Z(εx) the complex impedance of the wall, and the normal vector is given by

En = Eer − εR′Eex√
1+ ε2R′2

It is convenient to introduce the slowly varying functionζ = −iωρ0/Z.

i) Observe that for a straight duct with uniform mean flow and walls (ε = 0) the sound field can be
written as a sum over modes, given by

ψmµ = Jm(αmµr )e−imϑ e−ikmµx

wherem andαmµ are so-called eigenvalues (they are eigenvalues of the transverse Laplace prob-
lem, but this is not important here).m is an integer, whileαmµ satisfiesαJ ′m(αR) = ζ Jm(αR).
The axial wave numberkmµ can be expressed inω/c0 andαmµ.

ii) Consider now the multiple scales problem for smallε of a slowly varying mode propagating
through the duct. Determine analogous to the example in the SIAM book the shape of such a
quasi-ductmode to leading order.

Eventually, the following integral of Bessel functions canbe used:

∫
Jm(αr )2r dr = 1

2

(
r 2 − m2

α2

)
Jm(αr )2+ 1

2r 2J ′m(αr )2.
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7.2.8 A nearly resonant weakly nonlinear forced harmonic oscillator

Consider the system governed by the equation of motion

y′′ + y+ αy3 = ε3/2 cosωt.

We are interested in the stationary solution due to the driving force, so initial conditions are not
important and solutions of the homogeneous equation are ignored. Find, asymptotically forε→0 and
α = O(1), the solution up to second order.

a) forω2 = 1+ O(1), i.e. away from resonance;

b) for ω2 = 1+ εµ, i.e.near resonance.

Hint: For part (b), introduce the variableτ = ωt and use similar techniques as encountered with the
method of multiple scales and Lindstedt-Poincaré.

7.2.9 A non-linear beam with small forcing

The equation of a non-linear beam with a small forcing is

∂4

∂x4
u− κ ∂

2

∂x2
u+ ∂2

∂t2
u = f (t) sin(πx)

for 0 < x < 1 and t > 0, where u = ∂2

∂x2 u = 0 at x = 0, x = 1. The (time dependent)
coefficientκ is defined by

κ = 1

4

∫ 1

0

( ∂
∂x

u
)2

dx.

Assumeu(x, t, ε) = U (t, ε) sin(πx).

a) Find the first-term of an asymptotic expansion for smallε of the solution for f (t) = ε sin(t). We
do not apply any initial conditions but assume that the solution consists only of the part that is
driven by the sourcef (t).

b) Using againf (t) = ε sin(t), solve as multiple scales problem the first two terms of an expansion
of the solution, satisfying the initial conditionsu(x,0) = ∂

∂t u(x,0) = 0.
Hint: note that any combination of the type sin(π2t) sin(t) = 1

2 cos(π2 − 1)t − 1
2 cos(π2 + 1)t

will never be in resonance with vibrations of a frequency of any multiple ofπ2 becauseπ2 is an
irrational number.

c) If we take for the driving forcef (t) = ε
3
2 sin(π2 + ω0ε)t , find the first-term of an asymptotic

expansion of the solution that valid for larget . The general solution of the slow variable problem
is difficult to find. Consider only stationary solutions. Canyou determine the type of stability of
these stationary points?
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7.2.10 Acoustic rays in a medium with a varying sound speed

Show that acoustic rays follow circular paths if the sound speed varies linearly in space:

(a) Rewrite the eikonal equation (♯) of Example 15.37 in characteristic form by using Theorem (12.6).

(b) Prove that in a medium with a linearly varying sound speedthe path of rays are circles.

Hint: make sure that the parameters, along the curvex = ξ(s) that represents the ray, corresponds
with the curve arc length. In that caset = d

dsξ is the unit tangent vector andκ = d2

ds2ξ is the curvature
vector. Assume thatc0 varies linearly in directionn, i.e.c0 = q+α(x·n). Show thatt×κ is constant,
and conclude that the torsion is zero and the curve lies in oneplane. Show that|κ| is a constant, and
conclude that the curve is a circle.

7.2.11 Homogenisation as a Multiple Scales problem

Consider a slow flow (like groundwater) or diffusion of matter in a medium with a fine local structure,
of which the properties (porosity etc.) vary slowly on a larger scale. Usually we are eventually inter-
ested in the large scale behaviour. In this case it makes sense to separate the small and large scales,
and see if the effect of the small scale behaviour can be represented by a large scale medium property,
by way of a local averaging process of the small scale medium properties. This approach is called
homogenisation, and can be considered as an application of the method of multiple scales.

Take the following model-problem of diffusion of a concentration u in a medium with a fast varying
propertya, driven by a slowly varying external sourcef .

d

dx

(
1

a

d

dx
u

)
= f (x).

a varies quickly (inx/ε) with a slowly (inx) varying averaged value. For definiteness we will assume
a to be of a particular form. Introduce the slow variableZ = x and the fast variablez = x/ε, such
that Z = εz. Hence

d

dz

(
1

a(z, ε)

d

dz
u(z, ε)

)
= ε2 f (εz)

A more general theory is possible fora(z, ε) = α(Z)+ β(z, Z) such that
∫ z

0
β(τ, Z)dτ = integrable inz for z→∞.

For the moment we start with assumingα is constant andβ = β(z). Assume the existence of the
regular (= uniform Poincaré) asymptotic expansion in the independentvariablesz andZ

u(z, ε) = U (z, Z, ε) = U0(z, Z)+ εU1(z, Z)+ ε2U2(z, Z)+ . . .

The crucial condition (a form of suppression of secular terms) is that regularity implies a uniform
asymptotic sequence of the terms, soU0,U1,U2, · · · = O(1) for Z 6 O(1) andz 6 O(1/ε).

Note: usually this is not uniform on an interval with boundary conditions. At the ends we will have
boundary layersx = O(ε). These will be ignored here.
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Derive the following homogenised equation in the slow variable only

U ′′0 (Z) = α f (Z).

Indicate how to proceed for higher orders.

7.2.12 The non-linear pendulum with slowly varying length

Consider a pendulum, moving in the(x, y)-plane, of a massm that is connected to a hinge at(0,0)
by an idealised massless rod of lengthL, which is varied slowly in time (slow compared to the typical
frequency of the fixed-length system). Denote byθ the angle between the rod and the vertical.

At time t the position(x, y), velocity (x′, y′) and acceleration(x′′, y′′) of the mass are given by

x = L sinθ, x′ = Lθ ′ cosθ + L ′ sinθ, x′′ = Lθ ′′ cosθ + 2L ′θ ′ cosθ − Lθ ′2 sinθ + L ′′ sinθ,

y = −L cosθ, y′ = Lθ ′ sinθ − L ′ cosθ, y′′ = Lθ ′′ sinθ + 2L ′θ ′ sinθ + Lθ ′2 cosθ − L ′′ cosθ.

The balancing forces are then inertia, equal tom times the acceleration, gravitygm in downwardy-
direction, and a reaction forcemR in the direction of the rod. If we regroup the forces in tangential
and longitudinal direction and divide bym, we obtain the equations

Lθ ′′ + 2L ′θ ′ + g sinθ = 0,

L ′′ − Lθ ′2− g cosθ = R.

In the following we will try to findθ(t) as a function of time whenL(t) is given,i.e. the first equation.
Note that reaction forceR(t) then follows straightaway and isnot part of the problem.

a) Assume thatL is of the order of someL0, θ is of the order of
√
ε, where small parameterε is

equal to the ratio between the inherent time scale of the pendulum
√

L0/g and the inherent time
scale (say,λ) of the variations ofL. In other words:

L := L
( t

λ

)
, ε =

√
L0/g

λ

Make the problem dimensionless, scale the variables in an appropriate way, and expand the equa-
tions up to and including terms ofO(θ3).

b) Solve forθ = θ(t) asymptotically for smallε by the WKB method.
Note: don’t use the WKB-Ansatz given in equation (7.10) on page 113, because the problem is
not linear. Apply Multiple Scales with a slowly varying fasttime scale.

7.2.13 Asymptotic behaviour of solutions of Bessel’s equation

The equation

y′′ + 1

r
y′ +

(
α2− m2

r 2

)
y = 0

has solutions in the form of Besselfunctions of orderm and argumentαr .
Find asymptotic solutions of WKB-type forα→∞ andr = O(1) with r > m/α.
Consider (i)m2 = O(1), (ii) m2 = O(α) and (iii) m2 = O(α2).
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7.2.14 Kapitza’s Pendulum

Denote the vertical axis asy and the horizontal axis asx so that the
motion of the pendulum happens in the(x, y)-plane. The following
notation will be used:ω and A are the driving frequency and amplitude
of the vertical oscillations of the suspension,g is the acceleration of
gravity, L is the length of the rigid and light pendulum,m is the mass
of the bob andω0 =

√
g/L is the frequency of the free pendulum.

Denoting the angle between pendulum and downward directionasφ,
the positionx = ξ , y = η of the pendulum at timet is

A

Lφ

x

y

ξ(t) = L sinφ

η(t) = −L cosφ − Acosωt

The potential energy of the pendulum due to gravity is definedby its vertical position as

Epot = −mg(L cosφ + Acosωt)

The kinetic energy in addition to the standard term1
2mL2

.
φ2 describing the velocity of a mathematical

pendulum is the contribution due to the vibrations of the suspension

Ekin = 1
2mL2

.
φ2+m ALω sin(ωt) sin(φ)

.
φ +1

2m A2ω2 sin2(ωt)

The total energy is thenE = Ekin+ Epot and the Lagrangian isL(t, φ,
.
φ ) = Epot− Ekin. The motion

of the pendulum satisfies the Euler-Lagrange equations

d

dt

∂L

∂
.
φ
= ∂L

∂φ

which is ..
φ= −L−1(g+ Aω2 cosωt) sinφ.

Assume that the driving amplitudeA is small compared toL and frequencyω is large compared to the
free frequencyω0, in such a way thatAω/Lω0 = O(1). We make this explicit by writingε = ω0/ω

andA/L = εµ. If we rescaleτ = ωt , we obtain

d2φ

dτ 2
= −(ε2+ εµ cosτ) sinφ.

From the structure of the equation we may infer thatφ = φ(τ, T, ε) has a fast timescaleτ and a
slow timescaleT = ετ . Finish the analysis by assuming thatφ can be written as the sum of a slowly
varying large part and a fast varying small part

φ(τ, T, ε) = φ0(T)+ εφ1(τ, T)+ ε2φ2(τ, T)+ . . .

Apply a consistency condition forφ2 being bounded forτ → ∞. Find an equation forφ0 and an
expression forφ1. Under what condition onµ are there two stationary solutionsφ0? Try to analyse
the stability inφ0 = π , the inverted pendulum.
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7.2.15 Doppler effect of a moving sound source

The observed pitch of a moving sound source of frequencyω0 is higher if the source approaches the
observer and lower if it recedes from it. This frequency shift, calledthe Doppler effect, occurs if the
time scale of the toneω−1

0 is much smaller than the time scaleT of the motion,i.e. if ω0T ≫ 1.

a) Consider for smooth amplitudeA and phaseω0Tφ the slowly varying,almostharmonic signalp

p(t) = A(t/T )eiω0Tφ(t/T), ω0T ≫ 1.

Its Short Time Fourier Transform(STFT) P is given by

P(ω; τ, σ ) =
∫ ∞

−∞
w(t − τ, σ )p(t)e−iωt dt,

where window functionw(t, σ ) is a non-negative real function symmetric int around 0, such that
it tends to zero fast enough outside of an interval of characteristic widthσ . More precisely, we
will assume thatw(t, σ )→ 1 for σ →∞ andw(σξ, σ )→ 0 for |ξ | → ∞.

Numerically convenient is the rectangular windoww(t, σ ) = 1 for |t| 6 σ and= 0 elsewhere.
We will use here the analytically more convenient choice, that avoids high-frequent artefacts inP,
of Gaussian windoww(t, σ ) = e−t2/σ2

, for which the STFT is called the Gabor transform.

The idea is that for small, but not too smallσ we are able to filter out a time dependent Fourier-type
spectrum associated to the higher frequencies (∼ ω0) in signal p. In the present case, with a slow
time O(T) of the amplitude and a fast timeO(ω−1

0 ) of the phase, a suitable choice isσ = √T/ω0.

In order to single out int the relevantσ -neighbourhood ofτ we transformt = τ + σ z, where
z = O(1). Introduce the small parameterε = (ω0T)−1 and make timest andτ dimensionless
on the short time scale. Obtain a form ofp reminiscent of the WKB Ansatz for slowly varying
almost harmonic functions. Find a small-ε approximation ofP, and understand whyω0φ

′ is indeed
sometimes called theinstantaneous frequency.

b) If the sound fieldp(x, t) of a time-harmonic point source, of frequencyω0 and moving subsoni-
cally along the pathx = xS(t), is given by the equation

c−2
0

∂2

∂t2 p−∇2 p = 4πq0 eiω0t δ(x − xS(t)),

then the solution in free field is given by the so-called Liénard-Wiechert potential

p(x, t) = q0 eiω0te

Re(1− Me cosθe)

wherete = te(x, t) is the emission time. This is the time of emission of the signal that travelled
along a straight line with the sound speedc0 from the source inxS at timete to the observer inx
at timet . It is a function ofx andt , implicitly given by the equation

t = te+
∥∥x − xS(te)

∥∥c−1
0 .

For subsonically moving sources, this equation has exactlyone solution. Furthermore, the distance
(at emission time)Re between source and observer, the Mach numberMe of the source speed, and
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the angleθe between the observer direction and the source velocity, arefunctions ofte and given
by

Re =
∥∥x − xS(te)

∥∥, Me =
∥∥xS(te)

∥∥
c0

, cosθe =
(x − xS(te)) · .xS(te)∥∥x − xS(te)

∥∥∥∥ .
xS(te)

∥∥ .

Assuming that time variations due to theω0 are much larger than those due to the varying source
position, what is the instantaneous frequency observed at position x and timeτ?

7.2.16 Vibration modes in a slowly varying elastic beam

Small lateral deflectionsu(s, t) of a slender beam (a so-called Rayleigh beam) of densityρ, Young’s
modulusE, slowly varying cross sectional areaA(s) and slowly varying moment of inertiaI (s), is
described by the equation

ρA
∂2u

∂t2
− ρ ∂

∂s

(
I
∂3u

∂t2∂s

)
+ E

∂2

∂s2

(
I
∂2u

∂s2

)
= 0.

Assume for convenience a beam withA(s) = D(s)2 and I (s) = D(s)4.

a) Consider a straight bar,i.e. a configuration without slowly varying geometry. Investigate the pos-
sible harmonic wavesu(s, t) = U eiωt−iks. What isk, for givenω?

b) Consider the varying bar. Assume a frequencyω such, that the typical correspondingreal wave
length is of the order of magnitude of a diameter. Verify thatthis corresponds withk D0 = O(1)
andω2 = O(E/ρD2

0).

Derive the differential equation for waves of the formu(s, t) = U (s)eiωt along the beam. Make the
problem dimensionless onρ, E and a typical diameterD0. Write s = D0z, A = D2

0a, I = D4
0a2.

c) In axial direction, the beam parameters vary with length scale L which is much longer thanD0.
Introduce the slendernessε = D0/L ≪ 1. We have thus the slowly varyinga = a(εz). Find a
WKB approximation ofU (z) = 8(εz)exp

(
iε−1

∫ εz
κ(ξ)dξ

)
.

7.2.17 An aging spring

A massM = M(t) is attached to a spring, with spring coefficientK = K (t). The positionu = u(t)
is given by the equation

(Mu′)′ + Ku = 0

a) Assume thatM = M0 is constant and the spring is slowly aging according toK (t) = K0 e−αt .
Make t dimensionless on the inherent time scaleT of the oscillator whent ≈ 0. In order to
concretise the (relative !) slowness of the aging, we assumethatT is much smaller than 1/α and
introduce the small parameterε = αT . Solve the resulting equation asymptotically forε→ 0 by
using the WKB method.

b) The same question for a constant spring coefficientK = K0 and a mass, slowly decaying accord-
ing to M(t) = M0 e−αt .
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Chapter 8

Integral Asymptotics

8.1 Integrals and Watson’s Lemma

In the following sections we will consider methods to determine the asymptotic behaviour of functions
defined by integrals. From Section 3.2 item 18 we know that a uniform asymptotic approximation can
be integrated directly. For a non-uniform approximation the situation is more subtle. An example is
the following integral. The result is important in its own right but in particular the proof is typical and
interesting.

Theorem 8.1 (A Result for Cauchy integrals) Let f be locally integrable1 in R, such that there is a
p > 0 with

f (t) = O(|t|−p) for t →±∞.
Then the following Cauchy-type integral in z∈ C, z 6∈ R has the asymptotic behaviour

∫ ∞

−∞

f (t)

t − z
dt =





O(z−p) if 0< p < 1,

O(z−1 log z) if p = 1,

O(z−1) if p > 1,

for |z| → ∞, |arg(±z)| > δ > 0.

Proof
We consider the right half-range integral on(0,∞) first. The left half is analogous.
By definition there are numbersK andt0 such that

| f (t)| 6 Kt−p for t > t0.

We split up the integral and apply the above.
∣∣∣∣
∫ ∞

0

f (t)

t − z
dt

∣∣∣∣ 6
∫ ∞

0

∣∣∣∣
f (t)

t − z

∣∣∣∣ dt 6
∫ t0

0

| f (t)|
|t − z| dt +

∫ ∞

t0

K

t p|t − z|dt

Write z= r eiθ and assume thatr > 2t0 such that along[0, t0] we have|t − z| > r − t > 1
2r , then

∫ t0

0

| f (t)|
|t − z| dt 6

2

r

∫ t0

0
| f (t)|dt.

1| f | is integrable on any finite interval.
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If 0 < p < 1, thent−p is integrable att = 0. We can estimate|t − z| >
∣∣sin 1

2θ
∣∣ (t + r ). Then

∫ ∞

t0

K

t p|t − z|dt 6
∫ ∞

0

K

t p|t − z|dt 6
K

r p
∣∣sin 1

2θ
∣∣
∫ ∞

0

1

τ p(τ + 1)
dτ = K

r p
∣∣sin 1

2θ
∣∣

π

sin(πp)
.

If p > 1, we find similarly
∫ ∞

t0

K

t p|t − z|dt 6
K

r
∣∣sin 1

2θ
∣∣
∫ ∞

t0

1

t p
dt = K

r
∣∣sin 1

2θ
∣∣

t1−p
0

p− 1
.

If p = 1, we find
∫ ∞

t0

K

t|t − z|dt 6
K

r
∣∣sin 1

2θ
∣∣
∫ ∞

t0

(1

t
− 1

t + r

)
dt = K

r
∣∣sin 1

2θ
∣∣
(
log r + log

(
t−1
0 + r−1)).

The results follow now immediately. �

Another important type is the following Laplace integral2. If f (t) is N times continuously differen-
tiable on[0,∞) and bounded, then the main contribution forε→ 0 of

∫ ∞

0
f (t)e−t/ε dt

comes from the neighbourhood oft = 0, because elsewhere the function is exponentially small. We
can utilise this by splitting the integration interval in a convenient way as follows

=
∫ √ε

0
+
∫ ∞
√
ε

f (t)e−t/ε dt = ε
∫ 1/

√
ε

0
f (εy)e−y dy+

∫ ∞
√
ε

f (t)e−t/ε dt

The last integral is exponentially small because
∣∣∣∣
∫ ∞
√
ε

f (t)e−t/ε dt

∣∣∣∣ 6
∫ ∞
√
ε

| f (t)e−t/ε |dt 6
∫ ∞
√
ε

K e−t/ε dt = Kε e−1/
√
ε .

Since f (εy) = f (0)+ εy f ′(0)+ 1
2ε

2y2 f ′′(0)+ . . . (uniformly) for εy ∈ [0,√ε), we have finally

= ε
∫ 1/

√
ε

0

(
f (0)+ εy f ′(0)+ . . .

)
e−y dy+ O(ε e−1/

√
ε) = ε f (0)+ ε2 f ′(0)+ · · · + O(εN+1).

This result is a special case of

Theorem 8.2 (Watson’s Lemma)Let f(t) be continuous3 on (0,∞) and exponentially bounded,
i.e. there is a real constant c> 0 such that f(t) = O(ect) for t → ∞. There are real constants
0< λ0 < λ1 < λ2 < . . . such that f has an asymptotic expansion for t→ 0 given by

f (t) ∼
N∑

n=0

antλn−1 for t ↓ 0.

Then f ’s Laplace transform has the following asymptotic expansion for s→∞

F(s) =
∫ ∞

0
e−st f (t)dt ∼

N∑

n=0

an
Ŵ(λn)

sλn
for s→∞ and |arg(s)| 6 β ∈ (0, 1

2π)

2A Laplace integral is an integral in the form of a Laplace transform.
3This can be relaxed,e.g.to piecewise continuous.
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Proof
Since f is continuous on(0,∞) andO(ect), there is for anyL > 0 a constantM with | f (t)| 6 M ect

on [L ,∞). Then for anys with Re(s) > c we have
∣∣∣∣
∫ ∞

L
f (t)e−st dt

∣∣∣∣ 6
∫ ∞

L

∣∣ f (t)e−st
∣∣ dt 6 M

∫ ∞

L
e−Re(s)t+ct dt = M ecL

Re(s)− c
e−Re(s)L = O(e−sL),

which is asymptotically fors→∞ smaller than any power ofs. In a similar way is
∫ ∞

0
tλn−1 e−st dt = s−λnŴ(λn) =

∫ L

0
tλn−1 e−st dt + O(e−sL).

Choose a real constantK . Then (by assumption) there is anL > 0 such that
∣∣∣∣∣ f (t)−

N∑

n=0

antλn−1

∣∣∣∣∣ 6 KtλN−1 for 0< t < L .

Hence fors with Re(s) > 0
∣∣∣∣∣

∫ L

0

(
f (t)−

N∑

n=0

antλn−1

)
e−st dt

∣∣∣∣∣ 6 K
∫ ∞

0
tλN−1 e−Re(s)t dt = KŴ(λN)Re(s)−λN 6 KŴ(λN)|s−λN |.

We write symbolically f for f (t)e−st and6 for
∑N

n=0 antλn−1 e−st, and split
∫ ∞

0
f dt =

∫ ∞

0
( f −6)dt +

∫ ∞

0
6 dt =

∫ ∞

0
6 dt +

∫ L

0
( f −6)dt+

∫ ∞

L
f dt−

∫ ∞

L
6 dt.

After taking all parts together, we have, for Re(s) large enough (i.e. for larges inside a cone|arg(s)| 6
β ∈ [0, 1

2π)), the claimed result

F(s) =
N∑

n=0

an
Ŵ(λn)

sλn
+ o(s−λN ).

�

In short, Watson’s Lemma tells us when integration and asymptotic expansion int can be exchanged,
to result in an asymptotic expansion ins−1.

Corollary 8.1 Any finite integral
∫ L

0 f (t)e−st dt of a function of the form f(t) = tσ g(t), with σ >
−1 and g(t) analytic in t= 0, satisfies the conditions of Watson’s Lemma 8.2.

Example 8.3
∫ ∞

0

e−st

t + 1
dt ∼

∑

n=0

(−1)n
n!

sn+1

∫ ∞

0
e−st log(1+ t2) dt ∼

∑

n=1

(−1)n+1

n

(2n)!
s2n+1

∫ 1
2π

0
e−s tan2(θ) dθ = 1

2

∫ ∞

0

e−st

√
t(1+ t)

dt ∼ 1

2

∑

n=0

(−1)n
Ŵ(n+ 1

2)

sn+ 1
2

Watson’s Lemma is stronger than might appear at first sight. Many integrals can be recast by a coor-
dinate transformation into the required form. More examples can be found in the exercises.
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8.2 Laplace’s Method

For generalisations of Laplace integrals,i.e. integrals of the form

f (s) =
∫ b

a
g(t)e−sh(t) dt

(with g and h sufficiently smooth) considered fors → ∞, we may typically have the dominant
contribution at an end of the interval or somewhere halfway.

Dominant contribution at left end. The dominant contribution is neart = a if h is strict-monotonically
increasing neara, i.e. h′(a) > 0, andh remains sufficiently bounded from below along the rest of the
interval. Assumeg(a) 6= 0. By a variant of Theorem 8.2 we have then

∫ b

a
g(t)e−sh(t) dt ≃

∫ a+s−
1
2

a
g(a)e−sh(a)−s(t−a)h′(a) dt ≃ g(a)e−sh(a)

s

∫ s
1
2

0
e−yh′(a) dt ≃ g(a)e−sh(a)

sh′(a)
.

Dominant contribution at right end. The dominant contribution is neart = b if h is strict-
monotonically decreasing nearb, i.e. h′(b) < 0, andh remains sufficiently bounded from below
along the rest of the interval. In a similar way as before (assumeg(b) 6= 0) we have then

∫ b

a
g(t)e−sh(t) dt ≃

∫ b

b−s−
1
2

g(b)e−sh(b)−s(t−b)h′(b) dt ≃ g(b)e−sh(b)

s

∫ 0

−s
1
2

e−yh′(b) dy ≃ −g(b)e−sh(b)

sh′(b)
.

Dominant contribution halfway (Laplace’s Method). Let h have an absolute minimum inc ∈
(a,b), such that4 h′(c) = 0, h′′(c) > 0 andh(t) = h(c)+ 1

2(t − c)2h′′(c)+ . . . . Let g(c) 6= 0
andh be sufficiently bounded from below along the rest of the interval. Then we obtain, by using∫ ∞
−∞ e−αt2

dt = √π/α, the asymptotic approximation fors→∞
∫ b

a
g(t)e−sh(t) dt ≃

∫ c+s−
1
4

c−s−
1
4

g(c)e−sh(c)− 1
2s(t−c)2h′′(c) dt ≃

√
2π

sh′′(c)
g(c)e−sh(c) .

(Note: O(s−
1
2 ) here vs.O(s−1) at the ends.) Proofs may be constructed in a similar way as with

Watson’s Lemma (8.2), by splitting the integration interval in an asymptotically small region neara,
b, or c respectively for the dominant contribution, and a rest witha negligible contribution.

Example 8.4 The modified Bessel functionK0(z) is for z→∞

K0(z) =
1

2

∫ ∞

−∞
e−zcosh(t) dt ∼

√
π

2z
e−z,

by noting thath(t) = cosh(t) satisfiesh(0) = 1, h′(0) = 0 andh′′(0) = 1.

Example 8.5 A famous example isStirling’s formula . Via the transformationt = nτ is

n! = Ŵ(n+ 1) =
∫ ∞

0
tn e−t dt = nn+1

∫ ∞

0
e−n(τ−logτ ) dτ ∼

√
2πnn+ 1

2 e−n (n→∞),

by noting thath(τ ) = τ − log(τ ) hash(1) = 1, h′(1) = 0 andh′′(1) = 1.

4The case for vanishing higher derivatives is analogous.
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8.3 Method of Stationary Phase

A generalisation of the above for Fourier-type integrals,i.e. integrals of the form

f (s) =
∫ b

a
g(t)eish(t) dt

(with g absolutely integrable andh strictly monotonic except in discrete points) considered for s→
∞, is similar, although there are differences. For example, proving the vanishing of the non-contributing
parts of the integral takes more work. For this we need a version of the Riemann-Lebesgue Lemma
including a generalisation.

Lemma 8.1 (Riemann-Lebesgue Lemma)If the functionφ(x) is absolutely integrable5, then the
(finite or infinite) Fourier integral

∫ b

a
φ(x)eisx dx→ 0 as |s| → ∞.

Proof
A sketch of the proof is as follows. We write

∫ b

a
φ(x)eisx dx = −

∫ b

a
φ
(

x + π
s

)
eisx dx +

∫ a+ πs

a
φ(x)eisx dx −

∫ b+ πs

b
φ(x)eisx dx

by a simple substitution, whence

2

∣∣∣∣
∫ b

a
φ(x)eisx dx

∣∣∣∣ =
∣∣∣∣∣

∫ b

a

{
φ(x)− φ

(
x + π

s

)}
eisx dx +

∫ a+ πs

a
−
∫ b+ πs

b
φ(x)eisx dx

∣∣∣∣∣

6

∫ b

a

∣∣∣φ(x)− φ
(

x + π
s

)∣∣∣ dx +
∫ a+ πs

a
|φ(x)|dx +

∫ b+ πs

b
|φ(x)|dx

which tend to 0 as|s| → ∞ by fundamental theorems of integration. �

Corollary 8.2 If the functionµ(x) is strictly monotonic, with|µ′(x)| > δ > 0, such that we can
define the inverse x= µ−1(z), then

∫ b

a
φ(x)eisµ(x) dx =

∫ µ(b)

µ(a)

φ(µ−1(z))

µ′(µ−1(z))
eiszdz→ 0 as |s| → ∞.

If we return to the original integral, we may typically have the dominant contribution at the ends of
the interval or somewhere halfway.

Dominant contribution at the ends. The dominant contribution is at the ends ifh is strictly mono-
tonic, such that we can write by partial integration

f (s) =
∫ b

a
g(t)eish(t) dt = g(t)eish(t)

ish′(t)

∣∣∣∣
b

a

− 1

is

∫ b

a

d

dt

[ g(t)

h′(t)

]
eish(t) dt ≃ g(t)eish(t)

ish′(t)

∣∣∣∣
b

a

since by the Riemann-Lebesgue Lemma the second integral decays faster thanO(1/s).

5This condition can be relaxed to piecewise continuous and uniform convergence at the ends and discontinuities.
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Dominant contribution halfway (Method of Stationary Phase). Leth have a 2-nd order stationary
point in c ∈ (a,b), such thath′(c) = 0, h′′(c) 6= 0 andh(t) = h(c) + 1

2(t − c)2h′′(c) + . . . , while
h is sufficiently smooth and strictly monotonic along the restof the interval, andg(c) 6= 0. Then we
obtain, by using

∫ ∞
−∞ e±iαt2

dt = e±
1
4π i√π/α, the asymptotic approximation fors→∞

∫ b

a
g(t)eish(t) dt ≃

∫ c+s−
1
4

c−s−
1
4

g(c)eish(c)+ 1
2 is(t−c)2h′′(c) dt ≃ g(c)eish(c) e±

1
4π i

√
± 2π

sh′′(c)
,

where the± sign can be chosen according to what is most convenient. Similar to Laplace’s Method,
a contribution here isO(s−

1
2 ), while O(s−1) at the ends. The limits→ −∞, and stationary points of

higher order can be dealt with in an analogous way (make sure to distinguish even and odd orders).
Proofs may be found by splitting the integration interval inan asymptotically small region nearc, and
a remaining part where the Riemann-Lebesgue Lemma can be applied.

Example 8.6 The n-th order Bessel function of the first kindJn(x) (section 10.1) has an asymptotic
behaviour for large values of the argumentx, given by

Jn(x) =
1

π
Re
[∫ π

0
eix sint−int dt

]

≃ 1

π
Re

[
e−in 1

2π eix sin( 1
2π) e−

1
4π i

√
2π

x sin(1
2π)

]
=
√

2

xπ
cos
(
x − 1

4π − 1
2nπ

)

due to the stationary point att = 1
2π .

Example 8.7 The asymptotic behaviour ofJn(n) for largen cannot be found by the standard formula.
However, a slight adaptation following the same lines of reasoning yields

Jn(n) =
1

π
Re
[∫ π

0
ein(sint−t) dt

]
≃ 1

π
Re
[∫ ∞

0
e−i 1

6nt3 dt
]
= 2

1
3

n
1
3 3

2
3Ŵ(2

3)

due to phase functionh(t) = sin(t)− t = −1
6t3 + . . . , expanded around the stationary pointt = 0.

Example 8.8 Another example that requires some preparation is the integral

∫ 1
2π

0
t sin(x cost) dt = Im

[∫ 1
2π

0
t eix cost dt

]

The point of stationary phase is at left endt = 0, which would normally lead to half its contribution, but
at the same time the functiong(t) = t vanishes there. However, by partial integration we can compensate
for this and find the dominating contributions from the ends

= Im

[
it

x sint
eix cost

∣∣∣∣
1
2π

0
−
∫ 1

2π

0

d

dt

( it

x sint

)
eix cost dt

]
= 1

x

(1
2π − cosx

)
+ o(x−1).
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8.4 Method of Steepest Descent or Saddle Point Method

The Method of Steepest Descent (Peter Debije, 1909) is essentially a recipe to optimise the integration
contour of an integral (for analytic functionsg andh) of the form

f (s) =
∫

C

g(z)e−sh(z) dz,

such that the integral is, after parametrisation, amenableto Laplace’s method.

As will be shown, the contribution to the integral comes primarily from the neighbourhood of the point
(or points) whereh′(z) = 0. Writeh = u+ iv. Supposeh′ vanishes at a pointz0 with h(z0) = u0+ iv0.
(We start with the assumption thath′′(z0) 6= 0, but higher order generalisations are similar.) In order
to make the integral not oscillatory anymore, we deform the contourC (at least for the part whereh
dominates) into a contourL wherev = v0 is constant. Such a contour is at the same time a contour
of steepest descentfor u: (i) ∇v is orthogonal to level curveL; (ii) because of the Cauchy-Riemann
relations is∇u, the direction whereu varies most, orthogonal to∇v, and hence directed alongL.

Sinceh′(z0) = 0,h(z) = h(z0)+ 1
2h′′(z0)(z−z0)

2+. . .. If we write 1
2h′′(z0) = ρ eiα andz= z0+r eiθ ,

it follows thatu = u0 + ρr 2 cos(2θ + α), from which can be concluded thatz0 is asaddle pointof
u. Therefore, there are two steepest descent contoursv = v0: one of hill-type and one of valley-type,
which intersect atz0. Obviously, only the valley-type is useful, whereu has a minimum atz = z0.
Along L we have thush = u+ iv0 whereu is real. With parametrisationz= γ (t), with z0 = γ (0), is
thenh(γ (t)) = h(z0)+ 1

2βt2+ . . . whereβ = h′′(z0)γ
′(0)2 is by the above construction real positive.

Taking note of the directionz0 is crossed, we obtain

f (s) =
∫

L

g(z)e−sh(z) dz=
∫ b

a
g(γ (t))e−sh(γ (t)) γ ′(t)dt ≃ ±

√
2π

sh′′(z0)
g(z0)e−sh(z0) .

The method is best explained by an example:

Example 8.9 A classic example is Hankel’s asymptotic expansion of the Bessel functions. Consider (see
section 10.1) the representation of then-th order Hankel function of the first kind

H (1)
n (s) = 1

π i

∫

C

essinhz−nz dz,

with integration contourC from−∞ to∞+ π i. We are interested in its behaviour fors→∞.

Consider the landscape of the following function

h(z) = − sinh(z) = − sinh(x) cos(y)− i cosh(x) sin(y).

h(z) has a stationary point, whereh′(z) = 0, atz0 = 1
2π i. It is clearly a saddle point of Re(h), as Re(h)

is negative in the right-lower and left-upper semi-infinitestrip (see the figure below), and positive in the
right-upper and left-lower strip (gray). Evidently, the integration contourC has to run from the left-lower
to the right-upper strip, otherwise the integral would not converge. There are two paths of steepest descent
of Re(h) through saddle pointz0. They are given by Im(h) = − cosh(x) sin(y) = −1. After some algebra
they are found to be given by

y = 2 arctan(ex) (red), y = 2 arctan(e−x) (blue).
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For the blue path,z0 is a maximum of Re(h), and this path is useless for our purposes. For the red path,
however, it is a minimum. So we deformC into the red pathL, in order to be able to apply Laplace’s
method.

With the following parametrisationγ and its properties

z= γ (t) = t + i 2 arctan(et ), γ ′(t) = 1+ i cosh(t)−1, sinhγ (t) = − sinh(t) tanh(t)+ i

we obtain

H (1)
n (s) = 1

π i

∫ ∞

−∞
e−sγ (t)−nγ (t) γ ′(t) dt = eis

π i

∫ ∞

−∞
e−ssinh(t) tanh(t)−nt−i2n arctan(et )(1+ i cosh(t)−1) dt,

Since the contribution of the integrand6 is now concentrated neart = 0 (i.e. z0), we have

H (1)
n (s) ≃ eis

π i

∫ ∞

−∞
e−st2−i2n arctan(1)(1+ i) dt =

√
2

πs
eis− 1

2πni− 1
4π i (s→∞).

6For n &
√

s andst2 = O(1), the termnt is not negligible against−st2 and the approximation breaks down.
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8.5 Applications

8.5.1 Group velocity

Many linear waves inx and t , for example water waves, are such that components∼ e−ikx of wave
numberk only exist in combination with components∼ eiωt of a specific frequencyω. This frequency
is given by a relationω = �(k), called the dispersion relation. By superposition these waves can be
written in general by the Fourier integral

ψ(x, t) =
∫ ∞

−∞
g(k)eiωt−ikx dk =

∫ ∞

−∞
g(k)eit (�(k)−k x

t ) dk.

Applying the method of stationary phase we conclude that an observer, moving with velocityv along
x = vt , sees for larget only the component of wave numberkv given by the stationary phase

d

dk

(
�(k)− kv

)
= �′(k)− v = 0.

In other words, these waves propagate with the group velocity, cg = dω
dk = �′(k), rather than the phase

velocity,cf = ω
k = �(k)/k. With ωv = �(kv) we have eventually

ψ(x, t) ≃ g(kv)eiωv t−ikvx e
1
4π i

√
2π

t�′′(kv)
for t →∞ along x = vt.

Linear water waves on depthh with gravity g and neglecting surface tension satisfyω = �(k) =√
gk tanh(kh), which is for deep water≃ √gk. The group velocitycg = 1

2

√
g/k is then exactly half

the phase velocitycf =
√

g/k. This is nicely seen when throwing a stone in a pond.

8.5.2 Doppler effect of a moving sound source.

The observed pitch of a moving sound source of frequencyω0 is higher if the source approaches the
observer and lower if it recedes from it. This frequency shift, calledthe Doppler effect, occurs if the
time scale of the toneω−1

0 is much smaller than the time scaleT of the motion,i.e. if ω0T ≫ 1.

Let the sound fieldp(x, t) of a time-harmonic point source, of frequencyω0 and moving subsonically
along the pathx = xS(t), be given by the following inhomogeneous wave equation

c−2
0

∂2

∂t2 p−∇2 p = 4πq0 eiω0t δ(x − xS(t)).

According to Liénard and Wiechert7 the solution in free space is given by

p(x, t) = q0 eiω0te

Re(1− Me cosθe)

wherete = te(x, t) is the emission time. This is the time of emission of the signal that travelled (along
a straight line with the sound speedc0) from the source inxS at timete to the observer inx at timet .
It is a function ofx andt , implicitly given by the equation

t = te+
∥∥x − xS(te)

∥∥c−1
0 .

7The so-calledLiénard-Wiechert potential is independently found in 1898 and 1900.
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For subsonically moving sources, this equation has exactlyone solution. Furthermore, the distanceRe

between source and observer, the Mach numberMe of the source speed, and the angleθe between the
observer direction and the source velocity, are functions of te and given by

Re =
∥∥x − xS(te)

∥∥, Me =
∥∥xS(te)

∥∥
c0

, cosθe =
(x − xS(te)) · .xS(te)∥∥x − xS(te)

∥∥∥∥ .
xS(te)

∥∥ .

Let the typical time associated to the source motion beT , so we can writexS(t) = X0ξ(t/T), where
X0 characterises a typical position andξ = O(1) is a dimensionless function. Assuming that time
variations due to frequencyω0 are much larger thanT , we are interested in the Fourier-transformation
in time of p.

For this we ignore for the moment thex dependence and consider for smoothly varying amplitudeA
and phaseω0Tφ the slowly varying,almostharmonic signalp

p(t) = A(t/T )eiω0Tφ(t/T), ω0T ≫ 1.

If T is large compared tot , then eiω0Tφ(t/T) = eiω0Tφ(0)+iω0φ
′(0)t+... and we see that the observed

frequency is aboutω0φ
′(0). To generalise this for arbitraryt , we consider the Fourier transform

P(ω) =
∫ ∞

−∞
p(t)e−iωt dt,

to see which part of the spectrum dominates and when. We assume thatω is of the order of magnitude
of ω0. Introduce the large parameterλ = ω0T . Make timet dimensionless on the slow time scale,
with t = Tτ . Scaleω onω0 such thatω = ω0ν, with ν = O(1). We obtain then

P(ω) = P(ω0ν) = T
∫ ∞

−∞
A(τ )eiλφ(τ)−iλντ dτ,

For largeλ this becomes, by using the method of stationary phase,

P(ω0ν) ≃ T A(τs)eiλφ(τs)−iλντs e
1
4π i

√
2π

λφ′′(τs)

with τs = τs(ν) defined by the stationary phase equation

φ′(τs) = ν.

In other words: to find frequencyω = ω0ν = ω0φ
′(ts/T) we have to look at timet = ts = Tτs.

Therefore,ω0φ
′(t/T) is sometimes called theinstantaneous frequency.

Returning to our original problem of the moving point sourcewith te = Tφ(t/T ), we find that the
instantaneous frequencyω observed at positionx and timet is then given by8

ω = ω0φ
′(t/T) = ω0

dte
dt
= ω0

1− Me cosθe
.

This formula expresses the famous Doppler shift.

8Check. It requires implicit differentiation.
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8.6 Integral Asymptotics: Assignments

8.6.1 Integrals and Watson’s Lemma

1. Letφ be a smooth function (continuously differentiable) on[0,a]. Prove that forε→ 0

(a) ∫ a

0

φ(t)

t + ε dt = −φ(0) logε + O(1)

(b) ∫ a

0

φ(t)

t2+ ε2
dt = π

2ε
φ(0)+ O(logε)

HINT. Writeφ(t) = φ(t)− φ(0)+ φ(0) and prove that∃(K > 0) with |φ(t)− φ(0)| 6 Kt .

2. Find the (leading order) asymptotic behaviour forx→∞ of
∫ ∞

0

log(1+ 1/t)

t + x
dt.

HINT. Split the integration interval in[0, λ] ∪ [λ,∞) with λ = Os(
√

x).

3. Find, by applying Watson’s Lemma, the asymptotic behaviour for x→∞ of

∫ ∞

0
e−xt sint dt.

4. Find, by introducing the new variabley = t3 and applying Watson’s Lemma, the asymptotic
behaviour forx→∞ of ∫ ∞

0

e−xt3

1+ t
dt.

5. Find, by introducing the new variabley = (sint)4 and applying Watson’s Lemma, the asymp-
totic behaviour forx→∞ of ∫ 1

2π

0

√
sint e−x(sint)4 dt.

6. Find, by introducingt = x(y+1) and applying Watson’s Lemma, the asymptotic behaviour for
x→∞ of the exponential integral (c.f. section 10.3, and example8.3)

E1(x) =
∫ ∞

x

e−t

t
dt.

7. Let f (t) be continuous on[0,∞), analytic int = 0 and bounded fort →∞. Letµ > 0. Find
the asymptotic behaviour forz→∞ of

F(z) =
∫ ∞

0
f (t)e−zt1/µ dt.

HINT. Transformt = yµ and apply Watson’s Lemma.
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8. A representation of the Airy function Ai(x) is given by

Ai(x) = e−
2
3 x

3
2

π

∫ ∞

0
e−x

1
2 t2

cos
(

1
3t3
)

dt.

Find its asymptotic behaviour forx→∞. HINT. Transformt2 = τ .

9. Find the asymptotic behaviour form→∞ of

S(m) =
∫ π

0

(
sint

t

)m

dt

by introducingτ = ln(t/ sint) and showing that

S(m) =
∫ ∞

0
e−mτ dt

dτ
dτ,

dt

dτ
= t sint

sint − t cost
=
√

3

2τ
+ . . . (τ → 0).

10. Generalise Watson’s Lemma for integrals of the form

∫ ∞

0
tµ−1 ln(t) f (t)e−xt dt

where f is analytic int = 0. You may use the identity

∫ ∞

0
t x−1 ln(t)e−t dt = Ŵ′(x) = ψ(x)Ŵ(x).

11. Find an asymptotic expansion forε→ 0 of the integral

∫ ∞

0
e−t tµ f (εt)dt

whereµ > −1, and f (x) is analytic inx = 0 and exponentially bounded forx→∞.

12. Find an asymptotic expansion forε→ 0 of the integral

∫ ∞

0

e−t

(1+ εt)3 dt.

13. Consider forx,a, s > 0 the functionh(x;a, s) = e−(a/x)
s
. Show that fors → ∞, a fixed

andx ∈ (0,∞) it tends to the unit step functionH (x − a), by proving that for a smooth and
integrable testfunctionφ(x) the following integral satisfies

∫ ∞

0
h(x;a, s)φ(x)dx =

∫ ∞

0
H (x − a)φ(x)dx − s−1γ φ(a)+ o(s−1)

You may assume that there is some numberK > a such thatφ(x) = 0 for x > K .
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8.6.2 Laplace’s Method

1. (a) Find, by introducingt = x
√

y+ 1 and applying Watson’s Lemma,

(b) Find, by introducingt = x + y and applying Watson’s Lemma,

(c) Find, by introducingt = xy and applying a version of Laplace’s method,

the asymptotic behaviour forx→∞ of the complementary error function

erfc(x) = 2√
π

∫ ∞

x
e−t2

dt.

Compare with the exact values of erfc(2) and erfc(4).

2. Find the asymptotic behaviour forx→∞ of the real functionK (x), defined forx > 0 by

K (x) =
∫ ∞

−∞
et e−xh(t) dt, where h(t) = et −t.

3. Consider, for reala,b, x, and real and smoothg,h, the following integral

∫ b

a
e−xh(t) g(t)dt

asymptotically forx → ∞. Let h(t) attain its minimum at the interior pointt0 ∈ (a,b), while
h′′(t0) > 0. Show that the first term of the asymptotic expansion is

g(t0)e−xh(t0)

√
2π

xh′′(t0)
.

Write out the next few terms.

4. Find the asymptotic behaviour forx→∞ of

∫ 1

0
t x sin(t)2 dt

5. Find, withα > 0, the asymptotic behaviour forx→∞ of

∫ ∞

0
e−xt+xα log(t) dt

HINT. Transformt = xα−1y and apply Laplace’s method.

6. Verify that if in Laplace’s Methodg(c) = 0, the main contribution is fromg′′(c), provided this
is nonzero. Find the asymptotic behaviour for largex of the integral

∫ ∞

−∞
e−xt2 ln(1+ t + t2)dt.
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8.6.3 Method of Stationary Phase

1. Find, by using the Method of Stationary Phase, the asymptotic behaviour of then-th order
Bessel functionJn(x) for x,n→∞ at fixed ration/x. See example 8.6. Assumen/x < 1.

2. Find, by introducingt = √x y, the asymptotic behaviour for largex of the Airy function

Ai(−x) = 1

π

∫ ∞

0
cos(xt − 1

3t3)dt.

3. a) Show that, asx→∞,

∫ π

0
f (t)eixψ(t) dt ≃ f (0)eixa+ 1

6π i
( 1

27bx

) 1
3
Ŵ(1

3)

where f (t) andψ(t) are smooth,ψ ′(t) 6= 0 for t > 0, f (0) 6= 0, ψ(0) = a, ψ ′(0) =
ψ ′′(0) = 0 andψ ′′′(0) = 6b > 0.

b) Consider the Bessel function (section 10.1)

Jn(x) =
1

π

∫ π

0
cos(nt − x sint)dt.

Show that, asn→∞,

Jn(n) ≃
Ŵ(1

3)

π(48)
1
6 n

1
3

Mathematical Tripos Part II, 2013

4. a) Describe how the leading-order asymptotic behaviour as x→∞ of

I (x) =
∫ b

a
f (t)eixg(t) dt

may be found by the method of stationary phase, wheref andg are real functions and the
integral is taken along the real line. You should consider the cases for which:

(i) g′(t) is non-zero in[a,b) and has a simple zero att = b.

(ii) g′(t) is non-zero apart from having one simple zero att = t0, wherea < t0 < b.

(iii) g′(t) has more than one simple zero in(a,b) with g′(a) 6= 0 andg′(b) 6= 0.

b) Use the method of stationary phase to find the leading-order asymptotic form asx→∞ of

J(x) =
∫ 1

0
cos
(
x(t4 − t2)

)
dt.

Mathematical Tripos Part II, 2014
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8.6.4 Method of Steepest Descent or Saddle Point Method

1. By Fourier transformation tox of the equation

∂2φ

∂x2
+ ∂

2φ

∂y2
+ k2φ = 0

(wherek > 0), solutions inx ∈ (−∞,∞), y ∈ [0,∞), can be found of the form

φ(x, y) =
∫ ∞

−∞
F(α)e−iαx−iγ y dα, γ (α) =

√
k2− α2, F(α) = 1

2π

∫ ∞

−∞
φ0(x)eiαx dx,

for givenφ0(x) = φ(x,0). In view of conditions of boundedness fory → ∞ we choose9 a
branch and branch cuts ofγ such that Im(γ ) 6 0 andγ (0) = k. An integration contour is taken
that never crosses the branch cuts (figure i).

i

−k

k

ii

−k
k

Since we want to deform the contour into a steepest descent contour, it is more convenient to
rotate the branch cuts10 away as in figure ii. The integrand remains the same along the contour,
so the integral does not change. We transformα = ku, introducew(u) =

√
1− u2 analogous

to γ , and rewrite

φ(x, y) = k
∫ ∞

−∞
F(ku)e−krh(u) du,

where

h(u) = iu cosθ + iw(u) sinθ, x = r cosθ, y = r sinθ, 0 6 θ 6 π.

Let F be given. Considerφ asymptotically for largekr .

(a) Determine the asymptotic behaviour ofφ(x, y) for kr →∞ by application of the Method
of Stationary Phase, with the integration contour taken along the real axis.

(b) Find the saddle pointu0 of the phase function Reh(u). Note the sign ofw.

(c) Determine the contour of steepest descent throughu0 for which u0 is a minimum.
HINT. Considerh(u) = h(u0)+ λ2 and solve foru = u(λ). Make a plot.

(d) Determine the asymptotic behaviour ofφ(x, y) for kr →∞ by application of the Steepest
Descent Method. Compare your result with the one found in a).

(e) The far field radiation patternD(θ) = limkr→∞
√

kr |φ(x, y)| is independent ofr and
signifies the angular dependence of the radiated field strength |φ|.
DetermineD(θ) for a source of the formφ0(x) = e−iα0x− 1

2 (x/L)2, α0 = ±k cosθ0. (First,
determineF(α) from φ0(x).) What happens ifkL becomes large enough?

9Expressed in principal value square roots, this isγ (α) = − sign
(
Im
(√

k2− α2
) )√

k2− α2 with γ (+0+ i0) = k.
10Expressed in principal value square roots, this isγ (α) = −i

√
i(k− α)√i(k+ α) with γ (0) = k.
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2. Consider the integral

I (x) =
∫ 1

0

1√
t − t2

eix(t2+t) dt

for real x > 0. Find and sketch, in the complext-plane, the paths of steepest descent through
the endpointst = 0 andt = 1 and through any saddle point(s). Obtain the leading order term
in the asymptotic expansion ofI (x) for large positivex.

Mathematical Tripos Part II, 2016
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Chapter 9

Some Mathematical Auxiliaries

9.1 Phase plane

Phase portrait and phase plots

A differentiable functionφ(t), defined on some (not necessarily finite) intervalt ∈ [a,b], can be
portrayed by the parametric curve(x, y) in R

2, wherex = φ(t) andy = φ′(t). This curve is called a
phase portrait or phase plot ofφ, and the(φ, φ′)-plane is called a phase plane.

Phase plots are particularly useful ifφ is defined by a differential equation from which relations
betweenφ andφ′ can be obtained, but exact solutions are not or not easily found.

Important examples are

φ(t) = Acos(ωt), φ′(t) = −ωAsin(ωt), with ω2φ2+ φ′2 = ω2A2,

leading to an ellipse as phase plot. A variant is

φ(t) = Ae−ct cos(ωt), φ′(t) =
√
(ω2+ c2) Ae−ct sin(ωt − arctan(ω/c)− 1

2π)

leading to an elliptic spiral, converging to the origin ifc > 0 and diverging to infinity ifc < 0.

Phase plot to illustrate the solutions of differential equation

A differential equation like the harmonic equation

y′′ + ω2y = 0

is simple enough to be solved exactly byy(t) = Acos(ωt)+B sin(ωt), leading to periodic (circular or
elliptic) phase plots (see above). More difficult, in particular nonlinear, differential equations cannot be
solved exactly, and solutions have to be found (in general) numerically. The plot of a single solution,
however, does not tell us much about the whole family of all possible solutions. In such a case it is
instructive to create a phase plot. Take for example the Van der Pol equation

y′′ + y− ε(1− y2)y′ = 0.
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Figure 9.1: Elliptic (periodic) and spiral (damped) phase plots.

For small enough‖(y, y′)‖, the nonlinear term is on average negative and acts as a source leading to
an increase. For large enough‖(y, y′)‖, the nonlinear term is on average positive and acts as a sink
leading to a decay. From outside inwards and from inside outwards, these solutions converge to a
periodic solution with (for smallε) an amplitude of about 2.
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Figure 9.2: A phase plot of the Van der Pol equation, withε = 0.1 and solutions starting formy′ = 0
with y = 1 (red) andy = 3 (blue), respectively.
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Stability of stationary solutions

One of the most important applications of the phase plot is the stability analysis of stationary solutions
of 2nd order autonomous ordinary differential equations. Consider the equation

y′′ = F(y, y′),

then we can rewrite this as a system by identifyingx1 = y andx2 = y′ with

d

dt


x1

x2


 =


 x2

F(x1, x2)


 .

If the system has stationary solutions, they satisfyx2 = 0 andF(x1,0) = 0. Assume a stationary
solution(x1, x2) = (X0,0). Consider perturbation around it of the formx1 = X0 + ξ , x2 = η, where
‖(ξ, η)‖ is small. Then after linearisation

F(x1, x2) = aξ + bη + . . . , a = ∂

∂x
F(X0,0), b = ∂

∂y
F(X0,0),

we have
d

dt


ξ
η


 =


 η

aξ + bη


+ · · · =


0 1

a b




ξ
η


+ . . .

The matrix has (possibly complex) eigenvalues

λ1,2 = 1
2b±

√
a+ 1

4b2.

The solutions of the linearised system are typically a linear combination ofeλ1t andeλ2t . Depending
on the signs ofλ1,2, this results in local behaviour in the phase plane of ellipses (neutrally stable),
converging spirals (stable) or diverging spirals (unstable).

Van der Pol’s transformation

An interesting class of problems is the nonlinear oscillator

y′′ + k2y+ εy′g(y, y′) = 0.

With g(y, y′) = y2 − 1 is the Van der Pol equation a famous example. After transformation t := kt
andx1 = y, x2 = y′ we have

.
x1 = x2
.
x2 = −x1− εx2 g(x1, x2).

Considerable progress can be made if we write the solution inpolar coordinates of the phase plane:

x1 = r sinϕ, x2 = r cosϕ.

This leads to
.
r sinϕ + r

.
ϕ cosϕ = r cosϕ

.
r cosϕ − r

.
ϕ sinϕ = −r sinϕ − εr cosϕ g̃(r, ϕ).
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After eliminatingr andϕ we have

.
r = −εr cos2 ϕ g̃(r, ϕ)
.
ϕ = 1+ ε sinϕ cosϕ g̃(r, ϕ).

Sinceεr cos2 ϕ > 0, the growth (
.
r> 0) or decay (

.
r< 0) of the solution depends entirely on the sign

of g̃. A consequence is that if̃g is positive for larger and negative for smallr (like the Van der Pol
equation), the expanding and contracting phase plots, not being able to cross each other, have to result
in (at least) one closed contour (a so-called limit cycle),i.e. a periodic solution.

9.2 Newton’s equation

An interesting equation that we encounter rather often is Newton’s equation

y′′ + V ′(y) = 0, y(0) = y0, y′(0) = y1,

whereV (in mechanical context a potential) is a sufficiently smoothgiven function ofy. The interest-
ing aspect is that the equation does not depend ony′ and therefore can be integrated to

1
2(y
′)2+ V(y) = E = 1

2 y2
1 + V(y0),

with integration constantE. In mechanical context this relation amounts to conservation of total en-
ergy E, being the sum of kinetic energy12(y

′)2 and potential energyV(y).

Note that this relation betweeny andy′ is sufficient to construct phase plots for various values ofE.
For those values ofE, where these phase plots correspond to closed curves, we know in advance that
the corresponding solutions are periodic, which is important information.

We can eliminatey′ and obtain
y′ = ±

√
2
√

E − V(y).

Furthermore, we can even determiney implicitly formally
∫ y

y0

1√
E − V(s)

ds= ±
√

2 t

and with some luck we can integrate this integral explicitly. Note that a full integration may depend
on the value ofE.

A simple but important example is
y′′ + k2y = 0

with ellipses in the phase plane described by

1
2(y
′)2+ 1

2k2y2 = E = 1
2 y2

1 + 1
2k2y2

0

leading to
∫ y

y0

1√
E − 1

2k2s2
ds =

√
2

k
arcsin

(
ks√
2E

)∣∣∣∣∣

y

y0

= ±
√

2 t.
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The integral describes one period (+ for one half and− for another half), that can be extended. Hence
we obtain the expectedy = y0 cos(kt)+ y1k−1 sin(kt).

Another, less trivial example is
y′′ + y− y3 = 0

with
1
2(y
′)2+ 1

2 y2− 1
4 y4 = E.

Elementary analysis (check when the zero’s ofE − x + x2 are positive and real) reveals that this
relation yields in the phase plane closed curves around the origin if 0 < E 6 1

4. Hence, there are
periodic solutions for those values ofE.

9.3 Normal vectors of level surfaces

A convenient way to describe a smooth surfaceS is by means of a suitable smooth functionS(x),
wherex = (x, y, z), chosen such that the level surfaceS(x) = 0 coincides withS. So S(x) = 0 if
and only if x ∈ S. (Example:x2 + y2+ z2− R2 = 0 for a sphere;z− h(x, y) = 0 for a landscape.)

Then for closely located pointsx, x + h ∈ S we have

S(x + h) = S(x)+ h·∇S(x)+ O(h2) ≃ h·∇S(x) = 0.

Sinceh is (for h → 0) a tangent vector ofS, it follows that∇S at S= 0 is a normal ofS (provided
∇S 6= 0). We writen ∼ ∇S

∣∣
S=0.
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9.4 Trigonometric relations

The real or imaginary parts of the binomial series(eix±e−ix)n = ∑n
k=0(±)k

(n
k

)
ei(n−2k)x easily yield

trigonometric relations, useful for recognising resonance terms:

sin2x = 1
2(1− cos 2x), sin3x = 1

4(3 sinx − sin 3x),

sin x cos x = 1
2 sin 2x, sin2x cos x = 1

4(cosx − cos 3x),

cos2x = 1
2(1+ cos 2x), sin x cos2x = 1

4(sinx + sin 3x),

cos3x = 1
4(3 cosx + cos 3x),

sin4x = 1
8(3− 4 cos 2x + cos 4x), sin5x = 1

16(10 sinx − 5 sin 3x + sin 5x),

sin3x cos x = 1
8(2 sin 2x − sin 4x), sin4x cos x = 1

16(2 cosx − 3 cos 3x + cos 5x),

sin2x cos2x = 1
8(1− cos 4x), sin3x cos2x = 1

16(2 sinx + sin 3x − sin 5x),

sin x cos3x = 1
8(2 sin 2x + sin 4x), sin2x cos3x = 1

16(2 cosx − cos 3x − cos 5x),

cos4x = 1
8(3+ 4 cos 2x + cos 4x), sin x cos4x = 1

16(2 sinx + 3 sin 3x + sin 5x),

cos5x = 1
16(10 cosx + 5 cos 3x + cos 5x).

Another way to understand these relations is as (finite) Fourier series expansions of the 2π -periodic
functions at the left hand side. In particular

f (x) =
∞∑

n=0

an cos(nx)+ bn sin(nx)

where

a0 =
1

2π

∫ 2π

0
f (x)dx, an =

1

π

∫ 2π

0
f (x) cos(nx)dx, bn =

1

π

∫ 2π

0
f (x) sin(nx)dx.
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Chapter 10

Special Functions

The following functions are important in applied analysis,especially in physical applications. They
play a role in, and have been subject of asymptotic analysis.

10.1 Bessel Functions

The Bessel equation

y′′ + 1

z
y′ +

(
1− n2

z2

)
y = 0,

and therefore its solutions the Bessel Functions, appears naturally when the Laplace operator is rewrit-
ten in polar coordinates1. We have the following standard forms

Jn(z) =
1

π

∫ π

0
cos(zsint − nt)dt = 1

2π

∫ π

−π
eizsint−int dt,

Yn(z) =
1

π

∫ π

0
sin(zsint − nt)dt − 1

π

∫ ∞

0

[
ent +(−1)n e−nt

]
e−zsinht dt,

H (1)
n (z) = Jn(z)+ iYn(z) =

1

π i

∫ +∞+π i

−∞
ezsinht−nt dt,

H (2)
n (z) = Jn(z)− iYn(z) = −

1

π i

∫ +∞−π i

−∞
ezsinht−nt dt.

Jn is called the ordinaryn-th order Bessel Function of the 1st kind;Yn is called then-th order Bessel
Function of the 2nd kind or Neumann Function;H (1)

n , H (2)
n are called then-th order Hankel Functions

of the 1st and 2nd kind or Bessel Functions of the 3d kind.

1In 2D we have∇2φ = φrr + 1
r φr + 1

r 2φθθ . General solutions of∇2φ = 0 are found by separation of variables

φ = f (r )g(θ), leading toφ =∑ fn(r )gn(θ) wherer 2 f ′′n + r f ′n + (r 2− n2) fn = 0 andg′′n + n2gn = 0, for n ∈ Z.
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10.2 Gamma Function

For Re(z) > 0 isŴ(z), known as the Gamma Function, and the relatedz! defined by

Ŵ(z) =
∫ ∞

0
tz−1 e−t dt, z! = Ŵ(z+ 1).

The identitiesŴ(z+ 1) = zŴ(z) andŴ(1) = 1 yield indeedŴ(n+ 1) = n(n− 1) · · · 1. By pulling
back likeŴ(z) = Ŵ(z+ 1)/z= Ŵ(z+ 2)/z(z+ 1) = . . . , we extend the definition to allz ∈ C. With
Euler’s Reflection Formula

Ŵ(z)Ŵ(1− z) sin(πz) = π
one may derive thatŴ is analytic everywhere except forz= −n, n = 0,1,2, . . . where it has simple
poles with residue(−1)n/n!. For the asymptotic behaviour ofŴ(z), see example 8.5.

The logarithmic derivative is known as the Digamma Function

ψ(z) = Ŵ′(z)

Ŵ(z)
, ψ(z) ∼ log z− 1

2z
− 1

12z2
+ · · · (z→∞ in |arg(z)| 6 π − δ)

For z ∈ N and Euler’s Constantγ = 0.5772156649. . . we have the result for the harmonic series

n∑

k=1

1

k
= ψ(n+ 1)+ γ ∼ ln n+ γ + 1

2n
− 1

12n2
+ · · · (n→∞)

The Incomplete Gamma Functions are defined by the integrals

Ŵ(a, z) =
∫ ∞

z
ta−1 e−t dt, γ (a, z) =

∫ z

0
ta−1 e−t dt (Re(a) > 0).

Unless indicated otherwise, principal values are assumed with a branch cut along the negative real
axis and the integration contours not crossing the negativereal axis. Note thatŴ(0, z) = E1(z),
Ŵ(1, z) = e−z, Ŵ(1

2, z
2) = √π erfc(z). Asymptotically forz→∞ anda fixed we have

Ŵ(a, z) = za−1 e−z

(n−1∑

k=0

uk

zk
+ O(z−n)

)
, in |arg(z)| 6 3

2π − δ.

whereu0 = 1, uk = (a− 1)(a− 2) · · · (a− k).

A related function isB(x, y), known as the Beta Function, and defined for Rex > 0, Rey > 0 by

B(x, y) = Ŵ(x)Ŵ(y)

Ŵ(x + y)
=
∫ 1

0
t x−1(1− t)y−1 dt =

∫ ∞

0

t x−1

(1+ t)x+y
dt.

Example 10.1 Let α ∈ R andβ, z ∈ C with α > 0 and Reβ > 0,Rez > 0, and a principal value power
function. Then ∫ ∞

0
tβ−1 e−ztα dt = α−1z−β/αŴ(β/α).

Example 10.2 Let z, α ∈ C. Then

(1+z)α =
∞∑

n=0

(
α

n

)
zn = 1+αz+ 1

2α(α−1)z2+· · · ,
(
α

n

)
= α!

n!(α − n)! =
α(α − 1) · · · (α − n+ 1)

n! .

where the series is finite ifα ∈ N ∪ {0}. Otherwise, it converges absolutely for|z| < 1.
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10.3 Dilogarithm and Exponential Integral

The Dilogarithm and the Exponential Integral are complex functions with much in common with the
complex logarithm.

The Dilogarithm, defined by

Li2(z) =
∞∑

k=1

zk

k2
= −

∫ z

0

ln(1− t)

t
dt =

∫ ∞

0

zt

et −z
dt

has a branch point2 in z= 0 and a branch cut along the negative real axis. Special values:

Li2(1) = 1
6π, Li2(−1) = − 1

12π.

Note that another definition is known, given by dilog(z) = Li2(1− z).

We define the Exponential Integral

E1(z) =
∫ ∞

z

e−t

t
dt = −γ − log(z)−

∞∑

k=1

(−z)k

kk! = −γ − log(z)+
∫ z

0

1− e−t

t
dt,

whereγ = 0.5772156649. . . is Euler’s Constant, and with a branch point inz = 0 and a branch cut
along the negative real axis. Note that another definition isknown, given by Ei(z) = −E1(−z).

10.4 Error Function

The Error Function is defined by

erf(z) = 2√
π

∫ z

0
e−t2

dt = 2√
π

∞∑

n=0

(−1)nz2n+1

n!(2n+ 1)
.

The related Complementary Error Function is given by

erfc(z) = 2√
π

∫ ∞

z
e−t2

dt = 1− erf(z).

Special values:
erf(∞) = erfc(0) = 1.

For large realx and any fixedN ∈ N we have asymptotically

erfc(x) = e−x2

x
√
π

[
1+

N∑

n=1

(−1)n
1 · 3 · 5 · · · (2n− 1)

(2x2)n
+ O(x−2N−1)

]
(x→∞).

2For other branches than the principal branch, there is a second branch point inz= 1.
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Chapter 11

Units, Dimensions, Dimensionless
Numbers

Basic units
Name Symbol Physical quantity Unit

meter m length m
kilogram kg mass kg
second s time s
ampere A electric current A
kelvin K temperature K
candela cd luminous intensity cd
mole mol amount of substance1
hertz Hz frequency 1/s
newton N force, weight kg m/s2

pascal Pa pressure, stress N/m2

joule J energy, work, heat N m
watt W power J/s
radian rad planar angle 1
steradian sr solid angle 1
coulomb C electric charge A s
volt V electric potential kg m2/s3A
ohm � electric resistance kg m2/s3A2

siemens S electric conductance 1/�
lumen lm luminous flux cd sr
lux lx illuminance lm/m2
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Basic variables
Quantity Relation Unit Dimensions

stress force/area N/m2 = Pa kg m−1 s−2

pressure force/area N/m2 = Pa kg m−1 s−2

Young’s modulus stress/strain N/m2 = Pa kg m−1 s−2

Lamé parametersλ andµ stress/strain N/m2 = Pa kg m−1 s−2

strain displacement/length 1 1
Poisson’s ratio transverse strain/axial strain 1 1
density mass/volume kg/m3 kg m−3

velocity length/time m/s m s−1

acceleration velocity/time m/s2 m s−2

(linear) momentum mass× velocity kg m/s kg m s−1

force momentum/time N kg m s−2

impulse force× time N s kg m s−1

angular momentum distance× mass× velocity kg m2/s kg m2 s−1

moment (of a force) distance× force N m kg m2 s−2

work force× distance N m= J kg m2 s−2

heat work J kg m2 s−2

energy work N m= J kg m2 s−2

power work/time, energy/time J/s=W kg m2 s−3

heat flux heat rate/area W/m2 kg s−3

heat capacity heat change/temperature changeJ/K kg m2 s−2 K−1

specific heat capacity heat capacity/unit mass J/K kg m2 s−2 K−1

thermal conductivity heat flux/temperature gradient W/m K kg m s−3 K−1

dynamic viscosity shear stress/velocity gradient kg/m s kg m−1 s−1

kinematic viscosity dynamic viscosity/density m2/s m2 s−1

surface tension force/length N/m kg s−2
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Dimensionless numbers
Name Symbol Definition Description

Archimedes Ar g1ρL3/ρν2 particles, drops or bubbles
Arrhenius Arr E/RT chemical reactions
Biot Bi hL/κ heat transfer at surface of body
Biot Bi hD L/D mass transfer
Bodenstein Bo V L/Dax mass transfer with axial dispersion
Bond Bo ρgL2/σ gravity against surface tension
Capillary Ca µV/σ viscous forces against surface tension
Dean De (V L/ν)(L/2r )1/2 flow in curved channels
Eckert Ec V2/CP1T kinetic energy against enthalpy difference
Euler Eu 1p/ρV2 pressure resistance
Fourier Fo αt/L2 heat conduction
Fourier Fo Dt/L2 diffusion
Froude Fr V/(gL)1/2 gravity waves
Galileo Ga gL3ρ2/µ2 gravity against viscous forces
Grashof Gr β1T gL3/ν3 natural convection
Helmholtz He ωL/c= kL acoustic wave number
Kapitza Ka gµ4/ρσ 3 film flow
Knudsen Kn λ/L low density flow
Lewis Le α/D combined heat and mass transfer
Mach M V/c compressible flow
Nusselt Nu hL/κ convective heat transfer
Ohnesorge Oh µ/(ρLσ )1/2 viscous forces, inertia and surface tension
Péclet Pe V L/α forced convection heat transfer
Péclet Pe V L/D forced convection mass transfer
Prandtl Pr ν/α = CPµ/κ convective heat transfer
Rayleigh Ra β1T gL3/αν natural convection heat transfer
Reynolds Re ρV L/µ viscous forces against inertia
Schmidt Sc ν/D convective mass transfer
Sherwood Sh hD L/D convective mass transfer
Stanton St h/ρCPV forced convection heat transfer
Stanton St hD/V forced convection mass transfer
Stokes S ν/ f L2 viscous damping in unsteady flow
Strouhal Sr f L/V hydrodynamic wave number
Weber We ρV2L/σ film flow, bubble formation, droplet breakup
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Nomenclature
Symbol Description Units

c sound speed m/s
CP specific heat J/kg K
D diffusion coefficient m2/s
Dax axial dispersion coefficient m2/s
E activation energy J/mol
f frequency 1/s
g gravitational acceleration m/s2

h heat transfer coefficient W/m2 K
hD mass transfer coefficient m/s
k wave number =ω/c 1/m
L length m
p,1p pressure Pa
R universal gas constant J/mol K
r radius of curvature m
T,1T temperature K
t time s
V velocity m/s
α = κ/ρCP thermal diffusivity m2/s
β coef. of thermal expansion K−1

κ thermal conductivity W/m K
λ molecular mean free path m
µ dynamic viscosity Pa s
ν = µ/ρ kinematic viscosity m2/s
ρ,1ρ density kg/m3

σ surface tension N/m
ω circular frequency = 2π f 1/s
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Quotes

1. The little things are infinitely the most important.(Sherlock Holmes.)

2. Entia non sunt multiplicanda praeter necessitatem= Entities should not be multiplied beyond
necessity≈ Other things being equal, simpler explanations are generally better than more
complex ones.(W. Ockham.)

3. Formulas are wiser than man.(J. de Graaf.)

4. Nothing is as practical as a good theory.(J.R. Oppenheimer.)

5. An approximate answer to the right question is worth a great deal more than a precise answer
to the wrong question.(J. Tukey.)

6. An exact solution of an approximate model is not better than an approximate solution of an
exact model.(section 2.)

7. Never make a calculation until you know the answer: make an estimate before every calculation,
try a simple physical argument (symmetry! invariance! conservation!) before every derivation,
guess the answer to every puzzle.(J.A. Wheeler.)

8. The mathematician’s patterns, like the painter’s or the poet’s must be beautiful; the ideas, like
the colours or the words must fit together in a harmonious way.Beauty is the first test: there is
no permanent place in the world for ugly mathematics.(G.H. Hardy.)

9. Divide each difficulty into as many parts as is feasible and necessary to resolve it.(R. Descartes.)

10. You make experiments and I make theories. Do you know the difference? A theory is something
nobody believes, except the person who made it. An experiment is something everybody believes,
except the person who made it.(A. Einstein.)

11. It is the theory which decides what we can observe.(A. Einstein.)

12. As far as the laws of mathematics refer to reality, they are not certain, as far as they are certain,
they do not refer to reality.(A. Einstein.)

13. Science is nothing without generalisations. Detached and ill-assorted facts are only raw mate-
rial, and in the absence of a theoretical solvent, have but little nutritive value.(Lord Rayleigh)

14. We need vigour, not rigour!(anonym.)

15. It is the nature of all greatness not to be exact.(E. Burke.)

16. The capacity to learn is a gift; The ability to learn is a skill; The willingness to learn is a choice.
(F. Herbert.)
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